簡易檢索 / 詳目顯示

研究生: 蔡家緯
Tsai, Chia-Wei
論文名稱: 基於量子糾結態之量子安全通訊
Quantum Secure Communication Based on Quantum Entangled State
指導教授: 黃宗立
Hwang, Tzonelih
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 88
中文關鍵詞: 密碼學量子安全通訊量子糾結態
外文關鍵詞: cryptography, quantum secure communication, entangled state
相關次數: 點閱:93下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今數位網路的時代中,如何提供使用者一個安全的通訊管道已成為一項重要的研究議題。為解決安全通訊的問題,近代密碼學(modern cryptography)被廣泛的研究與發展。雖然,近代密碼學(包含對稱密碼系統 (symmetric cryptograph) 與非對稱系統 (asymmetric cryptography) 系統,)已經可以讓使用者在數位網路的環境中安全地傳送訊息,然而,在1994年時,學者Shor使用量子的物理特性,提出一個量子演算法,成功在線性時間中分解大質因數。換言之,一些基於數學難題的非對稱加密演算法在量子電腦的環境下,將面臨被破解的問題。這意味著傳統密碼學在量子電腦的環境下,可能將不再能全然提供使用者安全的通訊管道。因此,如何在量子電腦的環境下建立安全的通訊協定將是未來密碼學研究的重點議題。有鑒於此,本論文試圖利用量子物理的特性來架構量子安全通訊協定(quantum secure communication protocol, QSC protocol)。本論文專著於研究糾結態之量子物理特性。首先,研究三個量子糾結態,包括:對稱式W糾結態 (symmetric W state),GHZ-like糾結態 (GHZ-like state) 與cluster糾結態 (the cluster state),針對這三個糾結態提出編碼的方法,並利用這些編碼的方法來建置直接量子通訊協定(direct quantum communication protocol, DQC protocol) 與確定式量子通訊協定 (deterministic quantum communication protocol, DQC protocol)。此外,本論文亦發現了二個具有特殊量測結果的量子糾結態,並利用這二個量子糾結態之量測特性,提出一個高效率的量子祕密分享協定 (quantum secure sharing protocol, QSS protocol)。 最後,本論文利用GHZ-like糾結態建置一個量子隱傳協定(quantum teleportation protocol,QT protocol),在此協定中,一個純Bell糾結態 (pure Bell state) 可以被完整隱傳,進一步,基於此量子隱傳協定,本論文亦建置一個量子資訊分享協定(quantum information protocol, QIS protocol)。

    In the internet age, enabling users to transmit messages securely is an important area of research. Modern cryptography (involving, for example, symmetric and asymmetric cryptographic algorithms) has been developed and extensively applied to achieve this goal. Although it allows users to communicate with each other securely nowadays, it will not be deemed secure from a quantum perspective since Shor (1994) developed an efficient algorithm for integer factorization based on quantum phenomena, in which an integer N can be factored in polynomial time. Hence, some asymmetric cryptographic algorithms that are based on the underlying hardness of a mathematical problem may be cracked. In view of this fact, this thesis attempts to employ the properties of quantum mechanics to develop secure communication protocols in quantum environments. This thesis investigates the properties of entangled states. Firstly, three entangled states are considered. These are the symmetric W state, the GHZ-like state, and the cluster state. Three coding function are developed using the entanglement of these entangled states, and these are used to establish the quantum direct communication protocol (QDC protocol) and the deterministic quantum communication protocol (DQC protocol), respectively. Next, two entangled states with a specific measurement property are identified. They are utilized to establish a quantum secret sharing protocol (QSS protocol). Finally, a teleportation using the GHZ-like state is proposed, in which a pure Bell state can be perfectly teleported via a GHZ-like state. Then, a quantum information sharing protocol (QIS protocol) is developed based on this teleportation.

    Contents Contents i 1 Introdiction 1 1.1 Overview of Quantum Cryptography . . . . . . . . . . . . . . . . . . . 1 1.2 Motivations and Contributions . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Reviews of Quantum Cryptography 7 2.1 Quantum Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 The Qubit and Its Properties . . . . . . . . . . . . . . . . . . . 7 2.1.2 The No-cloning Principle . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 Entangled States and Their Properties . . . . . . . . . . . . . . 10 2.1.4 Unitary Operations . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.5 Quantum Dense Coding . . . . . . . . . . . . . . . . . . . . . . 19 2.1.6 Quantum Teleportation . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Quantum Communication Protocols . . . . . . . . . . . . . . . . . . . . 25 2.2.1 Quantum Message Communication Protocol . . . . . . . . . . . 26 2.2.2 Quantum Sharing Protocol . . . . . . . . . . . . . . . . . . . . 28 2.2.3 Eciency Evaluation Function . . . . . . . . . . . . . . . . . . . 29 3 Novel Techniques of Entangled States 31 3.1 Coding Function of Symmetric W State . . . . . . . . . . . . . . . . . . 31 3.2 Dense Coding of GHZ-like State . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Dense Coding of Cluster State . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Teleportation of Pure Entangled State Via GHZ-like State . . . . . . . 37 3.5 Property on Two Special Entangled States . . . . . . . . . . . . . . . . 41 4 Quantum Message Communication Protocol 45 4.1 Quantum Direct Communication Protocol . . . . . . . . . . . . . . . . 45 4.1.1 The Proposed QDC Protocol . . . . . . . . . . . . . . . . . . . 46 4.1.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Deterministic Quantum Communication Protocol . . . . . . . . . . . . 51 4.2.1 The Proposed DQC Protocol via Symmetric W State . . . . . . 51 4.2.2 The Proposed DQC Protocol via Cluster State . . . . . . . . . . 53 4.2.3 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5 Quantum Sharing Protocol 61 5.1 Quantum Secret Sharing Protocol . . . . . . . . . . . . . . . . . . . . . 61 5.1.1 The Classication of QSS Protocol . . . . . . . . . . . . . . . . 61 5.1.2 The Proposed QSS Protocol . . . . . . . . . . . . . . . . . . . . 62 5.1.3 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2 Quantum Information Sharing Protocol . . . . . . . . . . . . . . . . . . 68 5.2.1 The Proposed QIS Protocol . . . . . . . . . . . . . . . . . . . . 68 5.2.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6 Conclusions 73 Bibliography 77

    [1] P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring,
    in Foundations of Computer Science, 1994 Proceedings., 35th Annual
    Symposium on. IEEE, 2002, pp. 124 134.
    [2] S. Wiesner, Conjugate coding, ACM Sigact News, vol. 15, no. 1, pp. 78 88, 1983.
    [3] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution
    and coin tossing (invited paper), in Proceedings of IEEE International Conference
    on Computers, Systems and Signal Processing, Bangalore, India, Dec. 1984, pp.
    175 179.
    [4] C. H. Bennett, Quantum cryptography using any two nonorthogonal states,
    Physical Review Letter, vol. 68, pp. 3121 3124, 1992.
    [5] C. H. Bennett, G. Brassard, and N. D. Mermin, Physical Review Letters, vol. 68,
    no. 5, pp. 557 559, 1992.
    [6] G. Gan, Quantum key distribution scheme with high e ciency, Communications
    in Theoretical Physics, vol. 51, no. 5, pp. 820 822, 2009.
    [7] C. Li, H. S. Song, L. Zhou, and C. F. Wu, A random quantum key distribution
    achieved by using Bell states, Journal of Optics B: Quantum and Semiclassical
    Optics, vol. 5, no. 2, pp. 155 157, 2003.
    [8] G. L. Long and X. S. Liu, Theoretically e cient high-capacity quantum-keydistribution
    scheme, Physical Review A, vol. 65, pp. 0 323 021 0 323 023, 2002.
    [9] R. Namiki and T. Hirono, E cient-phase-encoding protocols for continuousvariable
    quantum key distribution using coherent states and postselection, Phys-
    ical Review A, vol. 74, p. 032302, Sep. 2006.
    [10] D. Song, Secure key distribution by swapping quantum entanglement, Physical
    Review A, vol. 69, no. 3, p. 034301, 2004.
    [11] G. L. Long and X. S. Liu, Theoretically e cient high-capacity quantum-keydistribution
    scheme, Phys. Rev. A, vol. 65, no. 3, p. 032302, Feb 2002.
    [12] D. Gottesman and H. Lo, Proof of security of quantum key distribution with
    two-way classical communications, Information Theory, IEEE Transactions on,
    vol. 49, no. 2, pp. 457 475, 2003.
    [13] D. Mayers, Quantum key distribution and string oblivious transfer in noisy channels,
    in Advances in Cryptology�XCRYPTO��96. Springer, 1996, pp. 343
    357.
    [14] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, Experimental
    quantum cryptography, Journal of cryptology, vol. 5, no. 1, pp. 3 28, 1992.
    [15] R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, and C. Simmons,
    Quantum Cryptography over Underground Optical Fibers, in Advances in cryp-
    tology, CRYPTO'96: 16th annual international cryptology conference, Santa Bar-
    bara, California, USA, August 18-22, 1996: proceedings. Springer Verlag, 1996,
    p. 329.
    [16] P. D. Townsend, Secure key distribution system based on quantum cryptography,
    Electronics Letters, vol. 30, no. 10, pp. 809 811, 2002.
    [17] C. H. Bennett and S. J. Wiesner, Communication via one- and two-particle operators
    on einstein-podolsky-rosen states, Phys. Rev. Lett., vol. 69, no. 20, pp.
    2881 2884, Nov 1992.
    [18] H. J. Lee, D. Ahn, and S. W. Hwang, Dense coding in entangled states, Phys.
    Rev. A, vol. 66, no. 2, p. 024304, Aug 2002.
    [19] Z. Xue, Y. Yi, and Z. Cao, Scheme for sharing classical information via tripartite
    entangled states, Chinese Physics, vol. 15, p. 1421, 2006.
    [20] K. Yang, L. Huang, W. Yang, and F. Song, Quantum teleportation via GHZ-like
    state, International Journal of Theoretical Physics, vol. 48, no. 2, pp. 516 521,
    2009.
    [21] N. Kiesel, C. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin, and H. Weinfurter,
    Experimental analysis of a four-qubit photon cluster state, Physical review let-
    ters, vol. 95, no. 21, p. 210502, 2005.
    [22] C. Schmid, N. Kiesel, W. Wieczorek, and H. Weinfurter, The entanglement of
    the four-photon cluster state, New Journal of Physics, vol. 9, p. 236, 2007.
    [23] W. Zhang, Y. M. Liu, J. Liu, and Z. J. Zhang, Teleportation of arbitrary unknown
    two-atom state with cluster state via thermal cavity, Chinese Physics B, vol. 17,
    p. 3203, 2008.
    [24] G. X. Pan, Y. M. Liu, X. F. Yin, W. Zhang, and Z. J. Zhang, A quantum splitting
    scheme og arbitrary two-qubit state using four-qubit cluster state, International
    Journal of Quantum Information, vol. 6, no. 5, pp. 1033 1040, 2008.
    [25] G. Y. Wang, X. M. Fang, and X. H. Tan, Quantum secure direct communication
    with cluster state, Chinese Physics Letters, vol. 23, pp. 2658 2661, 2006.
    [26] W. J. Liu, H. W. Chen, T. H. Ma, Z. Q. Li, Z. H. Liu, and W. B. Hu, An e cient
    deterministic secure quantum communication scheme based on cluster states and
    identity authentication, Chinese Physics B, vol. 18, p. 4105, 2009.
    [27] R. Raussendorf and H. Briegel, A one-way quantum computer, Physical Review
    Letters, vol. 86, no. 22, pp. 5188 5191, 2001.
    [28] Q. Y. Cai, Eavesdropping on the two-way quantum communication protocols
    with invisible photons, Physics Letters A, vol. 351, no. 1-2, pp. 23 25, 2006.
    [29] N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, Trojan-horse attacks
    on quantum-key-distribution systems, Physical Review A, vol. 73, no. 2, p. 22320,
    2006.
    [30] W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature,
    vol. 299, p. 802, 1982.
    [31] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of
    physical reality be considered complete? Phys. Rev., vol. 47, no. 10, pp. 777 780,
    May 1935.
    [32] W. Dür, G. Vidal, and J. Cirac, Three qubits can be entangled in two inequivalent
    ways, Physical Review A, vol. 62, no. 6, p. 62314, 2000.
    [33] X. S. Liu, G. L. Long, D. M. Tong, and F. Li, General scheme for superdense
    coding between multiparties, Phys. Rev. A, vol. 65, no. 2, p. 022304, Jan 2002.
    [34] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,
    Teleporting an unknown quantum state via dual classical and einstein-podolskyrosen
    channels, Phys. Rev. Lett., vol. 70, no. 13, pp. 1895 1899, Mar 1993.
    [35] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters,
    Teleporting an unknown quantum state via dual classical and einstein-podolskyrosen
    channels, Phys. Rev. Lett., vol. 70, no. 13, pp. 1895 1899, Mar 1993.
    [36] A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement,
    Phys. Rev. A, vol. 58, no. 6, pp. 4394 4400, Dec 1998.
    [37] V. N. Gorbachev and A. I. Trubilko, Quantum teleportation of an Einstein-
    Podolsy-Rosen pair using an entangled three-particle state, Journal of Experi-
    mental and Theoretical Physics, vol. 91, no. 5, pp. 894 898, 2000.
    [38] B. Shi and A. Tomita, Teleportation of an unknown state by W state, Physics
    Letters A, vol. 296, no. 4-5, pp. 161 164, 2002.
    [39] P. Agrawal and A. Pati, Perfect teleportation and superdense coding with W
    states, Physical Review A, vol. 74, no. 6, p. 62320, 2006.
    [40] L. Li and D. Qiu, The states of W-class as shared resources for perfect teleportation
    and superdense coding, Journal of Physics A: Mathematical and Theoretical,
    vol. 40, p. 10871, 2007.
    [41] K. Boström and T. Felbinger, Deterministic secure direct communication using
    entanglement, Phys. Rev. Lett., vol. 89, no. 18, p. 187902, Oct 2002.
    [42] Q. Y. Cai, The ping-pong protocol can be attacked without eavesdropping,
    Phys. Rev. Lett., vol. 91, no. 10, p. 109801, Sep 2003.
    [43] F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, Eavesdropping on the"
    Ping-Pong" Quantum Communication Protocol Freely in a Noise Channel, Arxiv
    preprint quant-ph/0507143, 2005.
    [44] F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication
    protocol using the einstein-podolsky-rosen pair block, Phys. Rev. A, vol. 68, no. 4,
    p. 042317, Oct 2003.
    [45] F. G. Deng and G. L. Long, Secure direct communication with a quantum onetime
    pad, Phys. Rev. A, vol. 69, no. 5, p. 052319, May 2004.
    [46] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev.
    Mod. Phys., vol. 74, no. 1, pp. 145 195, Mar 2002.
    [47] F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, Quantum secure direct
    communication network with Einstein-Podolsky-Rosen pairs, Physics Letters A,
    vol. 359, no. 5, pp. 359 365, 2006.
    [48] X. H. Li, P. Zhou, Y. J. Liang, C. Y. Li, H. Y. Zhou, and F. G. Deng, Quantum
    secure direct communication network with two-step protocol, Chinese Physics
    Letters, vol. 23, p. 1080, 2006.
    [49] C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Quantum secure direct
    communication with high-dimension quantum superdense coding, Phys. Rev. A,
    vol. 71, no. 4, p. 044305, Apr 2005.
    [50] X. H. Li, C. Y. Li, F. G. Deng, P. Zhou, Y. J. Liang, and H. Y. Zhou, Quantum
    secure direct communication with quantum encryption based on pure entangled
    states, Chinese Physics, vol. 16, p. 2149, 2007.
    [51] C. Wang, F. G. Deng, and G. L. Long, Multi-step quantum secure direct communication
    using multi-particle Green-Horne-Zeilinger state, Optics communica-
    tions, vol. 253, no. 1-3, pp. 15 20, 2005.
    [52] Q. Y. Cai and B. W. Li, Improving the capacity of the boström-felbinger protocol,
    Phys. Rev. A, vol. 69, no. 5, p. 054301, May 2004.
    [53] Q:Y: Cai and B. W. Li, Deterministic secure communication without using entanglement,
    Chinese Physics Letters, vol. 21, p. 601, 2004.
    [54] K. Shimizu and N. Imoto, Communication channels secured from eavesdropping
    via transmission of photonic bell states, Phys. Rev. A, vol. 60, no. 1, pp. 157 166,
    Jul 1999.
    [55] A. Beige, B. G. Englert, C. Kurtsiefer, and H. Weinfurter, Secure communication
    with a publicly known key, Arxiv preprint quant-ph/0111106, 2001.
    [56] T. Gao, F. L. Yan, and Z. X. Wang, Quantum secure conditional direct communication
    via EPR pairs, Arxiv preprint quant-ph/0501130, 2005.
    [57] F. L. Yan and X. Q. Zhang, A scheme for secure direct communication using EPR
    pairs and teleportation, The European Physical Journal B-Condensed Matter and
    Complex Systems, vol. 41, no. 1, pp. 75 78, 2004.
    [58] Z. X. Man, Z. J. Zhang, and Y. Li, Deterministic secure direct communication
    by using swapping quantum entanglement and local unitary operations, Chinese
    Physics Letters, vol. 22, p. 18, 2005.
    [59] X. H. Li, F. G. Deng, C. Y. Li, Y. J. Liang, P. Zhou, and H. Y. Zhou, Deterministic
    Secure Quantum Communication Without Maximally Entangled States,
    Journal of the Korean Physical Society, vol. 49, no. 4, pp. 1354 1359, 2006.
    [60] M. Hillery, V. Buºek, and A. Berthiaume, Quantum secret sharing, Physical
    Review A, vol. 59, no. 3, pp. 1829 1834, 1999.
    [61] S. Bagherinezhad and V. Karimipour, Quantum secret sharing based on reusable
    Greenberger-Horne-Zeilinger states as secure carriers, Physical Review A, vol. 67,
    no. 4, p. 44302, 2003.
    [62] G. P. Guo and G. C. Guo, Quantum secret sharing without entanglement,
    Physics Letters A, vol. 310, no. 4, pp. 247 251, 2003.
    [63] A. Karlsson, M. Koashi, and N. Imoto, Quantum entanglement for secret sharing
    and secret splitting, Physical Review A, vol. 59, no. 1, pp. 162 168, 1999.
    [64] S. Jie and Z. Shou, Secure Quantum Secret Sharing Based on Reusable GHZ
    States as Secure Carriers, Chinese Physics Letters, vol. 23, p. 1383, 2006.
    [65] Y. Sun, Q. Wen, F. Gao, X. Chen, and F. Zhu, Multiparty quantum secret
    sharing based on Bell measurement, Optics Communications, vol. 282, no. 17,
    pp. 3647 3651, 2009.
    [66] R. Shi, L. S. Huang, W. Yang, and H. Zhong, Multiparty quantum secret sharing
    with Bell states and Bell measurements, Optics Communications, vol. 283, no. 11,
    pp. 2476 2480, 2010.
    [67] L. Xiao, L. G. Lu, F. G. Deng, and J. W. Pan, E cient multiparty quantumsecret-
    sharing schemes, Physical Review A, vol. 69, no. 5, p. 52307, 2004.
    [68] F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, Erratum: Improving the
    security of multiparty quantum secret sharing against trojan horse attack [phys.
    rev. a 72, 044302 (2005)], Phys. Rev. A, vol. 73, no. 4, p. 049901, Apr 2006.
    [69] G. Gan, Multiparty Quantum Secret Sharing Using Two-Photon Three-
    Dimensional Bell States, Communications in Theoretical Physics, vol. 52, p. 421,
    2009.
    [70] F. L. Yan, T. Gao, and Y. C. Li, Quantum secret sharing protocol between multiparty
    and multiparty with single photons and unitary transformations, Chinese
    Physics Letters, vol. 25, p. 1187, 2008.
    [71] F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, Multiparty quantum
    secret splitting and quantum state sharing, Physics Letters A, vol. 354, no. 3, pp.
    190 195, 2006.
    [72] Z. J. Zhang, Y. Li, and Z. X. Man, Multiparty quantum secret sharing, Phys.
    Rev. A, vol. 71, no. 4, p. 044301, Apr 2005.
    [73] P. Zhou, X. Li, F. G. Deng, and H. Y. Zhou, E cient Three-Party Quantum
    Secret Sharing with Single Photons, Chinese Physics Letters, vol. 24, p. 2181,
    2007.
    [74] F. G. Deng, G. L. Long, and H. Y. Zhou, An e cient quantum secret sharing
    scheme with Einstein-Podolsky-Rosen pairs, Physics Letters A, vol. 340, no. 1-4,
    pp. 43 50, 2005.
    [75] F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, Quantum secure direct
    communication network with Einstein-Podolsky-Rosen pairs, Physics Letters A,
    vol. 359, no. 5, pp. 359 365, 2006.
    [76] Y. Li, K. Zhang, and K. Peng, Multiparty secret sharing of quantum information
    based on entanglement swapping, Physics Letters A, vol. 324, no. 5-6, pp. 420
    424, 2004.
    [77] Z. J. Zhang, J. Yang, Z. X. Man, and Y. Li, Multiparty secret sharing of quantum
    information using and identifying Bell states, The European Physical Journal D-
    Atomic, Molecular, Optical and Plasma Physics, vol. 33, no. 1, pp. 133 136, 2005.
    [78] J. Liu, Y. M. Liu, and Z. J. Zhang, Generalized multiparty quantum singlequtrit-
    state sharing, International Journal of Theoretical Physics, vol. 47, no. 9,pp. 2353 2362, 2008.
    [79] F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, Symmetric multipartycontrolled
    teleportation of an arbitrary two-particle entanglement, Phys. Rev. A,
    vol. 72, no. 2, p. 022338, Aug 2005.
    [80] F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, Multiparty quantumstate
    sharing of an arbitrary two-particle state with einstein-podolsky-rosen pairs,
    Phys. Rev. A, vol. 72, no. 4, p. 044301, Oct 2005.
    [81] F:G: Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, Quantum state sharing
    of an arbitrary two-qubit state with two-photon entanglements and Bell-state
    measurements, The European Physical Journal D, vol. 39, no. 3, pp. 459 464,
    2006.
    [82] Z. Wang, Y. M. Liu, D. Wang, and Z. Zhang, Generalized quantum state sharing
    of arbitrary unknown two-qubit state, Optics Communications, vol. 276, no. 2,
    pp. 322 326, 2007.
    [83] H. Yuan, Y. M. Liu, L. F. Han, and Z. J. Zhang, Tripartite arbitrary two-qutrit
    quantum state sharing, Communications in Theoretical Physics, vol. 49, p. 1191,
    2008.
    [84] X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, E cient symmetric
    multiparty quantum state sharing of an arbitrary m-qubit state, Journal of
    Physics B: Atomic, Molecular and Optical Physics, vol. 39, p. 1975, 2006.
    [85] Z. X. Man, Y. J. Xia, and N. B. An, Quantum state sharing of an arbitrary multiqubit
    state using nonmaximally entangled GHZ states, The European Physical
    Journal D, vol. 42, no. 2, pp. 333 340, 2007.
    [86] Y. B. Sheng, F. G. Deng, and H. Y. Zhou, E cient and economic ve-party
    quantum state sharing of an arbitrary m-qubit state, The European PhysicalJournal D-Atomic, Molecular, Optical and Plasma Physics, vol. 48, no. 2, pp.
    279 284, 2008.
    [87] T. J. Wang, H. Y. Zhou, and F. G. Deng, Quantum state sharing of an arbitrary
    m-qudit state with two-qudit entanglements and generalized Bell-state measurements,
    Physica A: Statistical Mechanics and its Applications, vol. 387, no. 18,
    pp. 4716 4722, 2008.
    [88] X. M. Xiu, D. Li, Y. J. Gao, and F. Chi, A Theoretical Scheme for Multiparty
    Multi-particle State Sharing, Communications in Theoretical Physics, vol. 49, p.
    1203, 2008.
    [89] T. Mihara, Quantum identi cation schemes with entanglements, Physical Review
    A, vol. 65, p. 052326, 2002.
    [90] J. Wang, Q. Zhang, and C. J. Tang, Quantum Secure Communication Scheme
    with W State, Communications in Theoretical Physics, vol. 48, p. 637, 2007.
    [91] D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, Quantum key
    distribution over 67 km with a plug&play system, New Journal of Physics, vol. 4,
    p. 41, 2002.
    [92] R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, Practical freespace
    quantum key distribution over 10 km in daylight and at night, New journal
    of physics, vol. 4, p. 43, 2002.
    [93] C. Gobby, Z. L. Yuan, and A. J. Shields, Quantum key distribution over 122 km
    of standard telecom ber, Applied Physics Letters, vol. 84, p. 3762, 2004.
    [94] T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, Quantum
    cryptography with entangled photons, Phys. Rev. Lett., vol. 84, no. 20, pp. 4729
    4732, May 2000.
    [95] Z. J. Zhang, Multiparty quantum secret sharing of secure direct communication,
    Physics Letters A, vol. 342, no. 1-2, pp. 60 66, 2005.
    [96] X. H. Li, F. G. Deng, and H. Y. Zhou, Improving the security of secure direct
    communication based on the secret transmitting order of particles, Phys. Rev. A,
    vol. 74, no. 5, p. 054302, Nov 2006.

    下載圖示 校內:2016-01-26公開
    校外:2016-01-26公開
    QR CODE