| 研究生: |
羅丞廷 Lo, Cheng-Ting |
|---|---|
| 論文名稱: |
以活化之碳材與親水性高分子黏著劑於超級電容器電極製備及應用 Preparation and application of activated carbon with hydrophilic polymer binder for the supercapacitors |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 乙烯-乙烯醇共聚物 、超級電容器 、黏著劑 、離子液體 |
| 外文關鍵詞: | ethylene vinyl alcohol copolymer, supercapacitor, binder, ionic liquids |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分為兩個部分:第一個部分調整超級電容器碳電極的親水性,希望此電極未來有機會用在水相電解液(0.6 M的NaCl (aq))的超級電容器及近期被廣泛研究的海水淡化方法:電容去離子法(capacitive deionization)。
論文中利用高溫下通二氧化碳的方式將商業的活性碳粉改質,再將活化後的碳粉混合共聚合高分子ethylene vinyl alcohol copolymer (EVOH)當作黏著劑(binder)並製成碳電極,EVOH的加入有效的改善碳材整體的親水性,也使得整個系統下的比電容值、電位窗及電容行為皆有明顯的提升,此電極在水溶液系統6000圈後的穩定性仍可維持90 %。
第二個部分將上述親水性的碳電極搭配實驗室發展成熟的離子液體(ionic liquids),比較不同親水程度及黏度的離子液體對電容行為的影響,結果顯示:搭配低黏度、高親水性的離子液體1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4)時,比電容可達170 F/g,離子液體本身寬廣的電位窗可使得系統下的工作電壓高達3 V,最大能量密度可達55 Wh/kg,在高功率密度4.5 kW/kg下,能量密度仍可維持25 Wh/kg。
The study includes two parts: In first part, we adjust the hydrophilicity of the carbon electrode with different ethylene vinyl alcohol copolymer (EVOH), and use the carbon electrodes in supercapacitor with aqueous electrolyte (0.6 M sodium chloride aqueous solution) and in capacitive deionization method for the desalination. We use CO2 (g) to activate commercial activated carbon powder and mix it with ethylene vinyl alcohol copolymer as binder to prepare the carbon electrode. By introducing EVOH, the carbon electrode is not only improve the hydrophilicity but also the specific capacitance, potential window and high cycling stability (90 % capacity retention after 6000 cycles).In second part, we use ionic liquids as electrolyte for the above mentioned carbon electrodes, and we compare different hydrophilicity and viscosity of ionic liquid with the impact of their capacitance behavior. We find that EMI-BF4 ,which has the lowest viscosity, highest hydrophilic properties, has the greatest specific capacitance up to 170 F/g, wide potential window up to 3V、maximum energy density 55 Wh/kg and deliver 25 Wh/kg at 4.5 kW/kg. The thermal stability and negligible vapor pressure of ionic liquid also increases the safety of supercapacitors.
[1] G.T. Kim, S.S. Jeong, M.Z. Xue, A. Balducci, M. Winter, S. Passerini, F. Alessandrini, G.B. Appetecchi, Journal of Power Sources, 199 (2012) 239-246.
[2] A. Balducci, W.A. Henderson, M. Mastragostino, S. Passerini, P. Simon, F. Soavi, Electrochimica Acta, 50 (2005) 2233-2237.
[3] A. Yongxin, C. Xinqun, Z. Pengjian, L. Lixia, Y. Geping, Journal of Solid State Electrochemistry, 16 (2011) 383-389.
[4] G.B. Appetecchi, G.T. Kim, M. Montanino, F. Alessandrini, S. Passerini, Journal of Power Sources, 196 (2011) 6703-6709.
[5] J. Reiter, M. Nadherna, Electrochimica Acta, 71 (2012) 22-26.
[6] J. Zheng, D. Zhu, Y. Yang, Y. Fung, Electrochimica Acta, 59 (2012) 14-22.
[7] R. Kotz, M. Carlen, Electrochimica Acta, 45 (2000) 2483-2498.
[8] S. Yoon, J. Lee, T. Hyeon, S.M. Oh, Journal of The Electrochemical Society, 147 (2000) 2507-2512.
[9] C.H.H. Hamann, A.; Vielstich, W., Electrochemistry, 1998.
[10] Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang, L. Chen, Journal of The Electrochemical Society, 144 (1997) 778-786.
[11] J. Yang, L. Zou, H. Song, Z. Hao, Desalination, 276 (2011) 199-206.
[12] X. Wang, J.S. Lee, C. Tsouris, D.W. DePaoli, S. Dai, Journal of Materials Chemistry, 20 (2010) 4602.
[13] J. Yang, L. Zou, N.R. Choudhury, Electrochimica Acta, 91 (2013) 11-19.
[14] M. Wang, Z.-H. Huang, L. Wang, M.-X. Wang, F. Kang, H. Hou, NJCh, 34 (2010) 1843.
[15] H. Wang, D. Zhang, T. Yan, X. Wen, L. Shi, J. Zhang, Journal of Materials Chemistry, 22 (2012) 23745.
[16] C.-H. Hou, J.-F. Huang, H.-R. Lin, B.-Y. Wang, Journal of the Taiwan Institute of Chemical Engineers, 43 (2012) 473-479.
[17] G. Wang, Q. Dong, Z. Ling, C. Pan, C. Yu, J. Qiu, Journal of Materials Chemistry, 22 (2012) 21819.
[18] K.-K. Park, J.-B. Lee, P.-Y. Park, S.-W. Yoon, J.-S. Moon, H.-M. Eum, C.-W. Lee, Desalination, 206 (2007) 86-91.
[19] S. Nadakatti, M. Tendulkar, M. Kadam, Desalination, 268 (2011) 182-188.
[20] C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli, S. Dai, Environmental science & technology, 45 (2011) 10243-10249.
[21] G. Wang, B. Qian, Q. Dong, J. Yang, Z. Zhao, J. Qiu, Separation and Purification Technology, 103 (2013) 216-221.
[22] G. Wang, C. Pan, L. Wang, Q. Dong, C. Yu, Z. Zhao, J. Qiu, Electrochimica Acta, 69 (2012) 65-70.
[23] H.-J. Oh, J.-H. Lee, H.-J. Ahn, Y. Jeong, Y.-J. Kim, C.-S. Chi, TSF, 515 (2006) 220-225.
[24] A.K. Mishra, S. Ramaprabhu, Desalination, 282 (2011) 39-45.
[25] Z. Wang, B. Dou, L. Zheng, G. Zhang, Z. Liu, Z. Hao, Desalination, 299 (2012) 96-102.
[26] Y. Chen, X. Zhang, H. Zhang, X. Sun, D. Zhang, Y. Ma, RSC Advances, 2 (2012) 7747.
[27] H. Li, L. Pan, C. Nie, Y. Liu, Z. Sun, Journal of Materials Chemistry, 22 (2012) 15556.
[28] X. Wen, D. Zhang, T. Yan, J. Zhang, L. Shi, Journal of Materials Chemistry A, 1 (2013) 12334.
[29] D. Zhang, X. Wen, L. Shi, T. Yan, J. Zhang, Nanoscale, 4 (2012) 5440-5446.
[30] Z. Peng, D. Zhang, L. Shi, T. Yan, Journal of Materials Chemistry, 22 (2012) 6603.
[31] Y. Wimalasiri, L. Zou, Carbon, 59 (2013) 464-471.
[32] D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, J. Zhang, Journal of Materials Chemistry, 22 (2012) 14696.
[33] Y.J. Zhang, J. Guo, T. Li, Advanced Materials Research, 549 (2012) 780-784.
[34] B.-H. Park, Y.-J. Kim, J.-S. Park, J. Choi, Journal of Industrial and Engineering Chemistry, 17 (2011) 717-722.
[35] B.-H. Park, J.-H. Choi, Electrochimica Acta, 55 (2010) 2888-2893.
[36] J.-Y. Choi, J.-H. Choi, Journal of Industrial and Engineering Chemistry, 16 (2010) 401-405.
[37] Z. Bo, Z. Wen, H. Kim, G. Lu, K. Yu, J. Chen, Carbon, 50 (2012) 4379-4387.
[38] Y. Cheng, H. Zhang, S. Lu, C.V. Varanasi, J. Liu, Nanoscale, 5 (2013) 1067-1073.
[39] F.P. Du, J.J. Wang, C.Y. Tang, C.P. Tsui, X.P. Zhou, X.L. Xie, Y.G. Liao, Nanotechnology, 23 (2012) 475704.
[40] Q. Guo, X. Zhou, X. Li, S. Chen, A. Seema, A. Greiner, H. Hou, Journal of Materials Chemistry, 19 (2009) 2810.
[41] D. Jiménez-Cordero, F. Heras, M.A. Gilarranz, E. Raymundo-Piñero, Carbon, 71 (2014) 127-138.
[42] H. Luo, L. Zheng, L. Lei, D. Zhang, J. Wu, J. Yang, Korean Journal of Chemical Engineering, 31 (2014) 712-718.
[43] J. Menzel, K. Fic, M. Meller, E. Frackowiak, Journal of Applied Electrochemistry, 44 (2014) 439-445.
[44] P. Ratajczak, K. Jurewicz, F. Béguin, Journal of Applied Electrochemistry, 44 (2013) 475-480.
[45] J.-G. Wang, Y. Yang, Z.-H. Huang, F. Kang, Carbon, 61 (2013) 190-199.
[46] J. Xu, R. Zhang, P. Chen, S. Ge, Journal of Power Sources, 246 (2014) 132-140.
[47] C. Zheng, X. Zhou, H. Cao, G. Wang, Z. Liu, Journal of Power Sources, 258 (2014) 290-296.
[48] Z. Zhu, Y. Hu, H. Jiang, C. Li, Journal of Power Sources, 246 (2014) 402-408.
[49] J. Hu, Z. Kang, F. Li, X. Huang, Carbon, 67 (2014) 221-229.
[50] J.S. Bonso, G.D. Kalaw, J.P. Ferraris, Journal of Materials Chemistry A, 2 (2014) 418.
[51] X.Y. Chen, D.H. Xie, Z.J. Zhang, C. Chen, Journal of Power Sources, 246 (2014) 531-539.
[52] Q. Cheng, J. Tang, N. Shinya, L.-C. Qin, Science and Technology of Advanced Materials, 15 (2014) 014206.
[53] C. Cui, W. Qian, Y. Yu, C. Kong, B. Yu, L. Xiang, F. Wei, Journal of the American Chemical Society, 136 (2014) 2256-2259.
[54] H. Kurig, A. Jänes, E. Lust, Journal of The Electrochemical Society, 157 (2010) A272.
[55] H. Kurig, M. Vestli, K. Tonurist, A. Janes, E. Lust, Journal of the Electrochemical Society, 159 (2012) A944-A951.
[56] M. Lazzari, M. Mastragostino, F. Soavi, Electrochemistry Communications, 9 (2007) 1567-1572.
[57] Z. Lei, Z. Liu, H. Wang, X. Sun, L. Lu, X.S. Zhao, Journal of Materials Chemistry A, 1 (2013) 2313.
[58] Z. Lin, Z. Li, K.-s. Moon, Y. Fang, Y. Yao, L. Li, C.-p. Wong, Carbon, 63 (2013) 547-553.
[59] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano letters, 10 (2010) 4863-4868.
[60] W. Liu, X. Yan, J. Lang, Q. Xue, Journal of Materials Chemistry, 21 (2011) 13205.
[61] K. Pinkert, M. Oschatz, L. Borchardt, M. Klose, M. Zier, W. Nickel, L. Giebeler, S. Oswald, S. Kaskel, J. Eckert, ACS Appl Mater Interfaces, 6 (2014) 2922-2928.
[62] F.B. Sillars, S.I. Fletcher, M. Mirzaeian, P.J. Hall, Energy & Environmental Science, 4 (2011) 695.
[63] T. Tooming, T. Thomberg, L. Siinor, K. Tonurist, A. Janes, E. Lust, Journal of the Electrochemical Society, 161 (2013) A222-A227.
[64] S. Yamazaki, T. Ito, M. Yamagata, M. Ishikawa, Electrochimica Acta, 86 (2012) 294-297.
[65] S. Brunauer, P.H. Emmett, E. Teller, Journal of the American Chemical Society, 60 (1938) 309-319.
[66] 林麗娟, 工業材料雜誌, 86 (1994) 100-109.
[67] D.J. Gardiner, P.R. Graves, H.J. Bowley, Practical Raman spectroscopy, Springer-Verlag, Berlin ; New York, 1989.
[68] A. Jänes, H. Kurig, E. Lust, Carbon, 45 (2007) 1226-1233.
[69] P.W. Atkins, L. Jones, Chemical principles : the quest for insight, W.H. Freeman, New York, 1999.
[70] 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司, 2002.
[71] M.-J. Deng, P.-Y. Chen, T.-I. Leong, I.W. Sun, J.-K. Chang, W.-T. Tsai, Electrochemistry Communications, 10 (2008) 213-216.
[72] T.-Y. Wu, B.-K. Chen, L. Hao, C.-W. Kuo, I.W. Sun, Journal of the Taiwan Institute of Chemical Engineers, 43 (2012) 313-321.
[73] F.B. Sillars, S.I. Fletcher, M. Mirzaeian, P.J. Hall, Physical chemistry chemical physics : PCCP, 14 (2012) 6094-6100.
[74] T. Kim, G. Jung, S. Yoo, K.S. Suh, R.S. Ruoff, Acs Nano, 7 (2013) 6899-6905.
校內:2017-07-30公開