| 研究生: |
楊桂禎 Yang, Kuei-Chen |
|---|---|
| 論文名稱: |
探討亞慢性奈米碳黑呼吸暴露後肺上皮細胞受損及增生的情形 The pulmonary epithelial cells injury and proliferation following sub-chronic inhalation exposure to ultrafine carbon black |
| 指導教授: |
張志欽
Chang, Chih-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 奈米碳黑 、亞慢性呼吸暴露 、二型肺泡細胞 、c-Met 、損傷 |
| 外文關鍵詞: | ultrafine carbon black, sub-chronic inhalation exposure, alveolar type II cell, c-Met, injury |
| 相關次數: | 點閱:58 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流行病學已指出,長期暴露於細懸浮微粒(Particulate matter, PM2.5)會使得肺腺癌發生率增加31%,國際癌症研究署(IARC)已將室外PM2.5歸類為人類一級致癌物。二型肺泡細胞被認為是肺腺癌的起始細胞之一,但目前模擬長期暴露於空氣中超細懸浮微粒對二型肺泡細胞之增生情形尚不明瞭。因此本研究探討亞慢性奈米碳黑呼吸暴露後肺上皮細胞受損、增生情形,以及致癌基因c-Met的活化。本研究以電腦程式控制呼吸暴露艙進行亞慢性奈米碳黑(Ultrafine carbon black, ufCB)暴露,將Wistar公鼠以600,000#/cm3的數目濃度,進行每天6小時,每週暴露5天,為期13週的暴露,並在暴露結束後一天犧牲。實驗結果顯示亞慢性奈米碳黑呼吸暴露後,肺沖提液中總發炎細胞計數在暴露後相較過濾空氣控制組或管錐控制組並未顯著上升,且白血球分類計數以巨噬細胞表現為主,並未觀察到嗜中性白血球的浸潤。而乳酸脫氫酶指標與過濾空氣控制組或管錐控制組相比在暴露13週後上升;鎖鏈素則在暴露後未顯著上升。H&E染色中在暴露組可見上皮細胞的增生或肉芽腫性的發炎,而在IHC染色結果中,二型肺泡細胞增生指數在暴露後顯著上升;肺上皮細胞染上p-c-Met的比例在暴露組中與過濾空氣控制組或管錐控制組相比皆顯著上升。
綜合以上結果,亞慢性呼吸暴露奈米碳黑後,總細胞計數、鎖鏈素雖未顯著增加,但在肺泡仍觀察到肺上皮細胞的增生,肺上皮細胞染上p-c-Met的比例也顯著上升。未來仍需進一步探討c-Met活化於呼吸暴露奈米碳黑後在早期病理變化中所扮演的腳色。
Epidemiological studies have shown that long-term exposure to fine particulate matters(PM2.5) is associated with the development of lung adenocarcinoma. International Agency for Research on Cancer(IARC) has classified outdoor particulate matters as a Group 1 carcinogen to humans. In this study, we investigated the pulmonary epithelial cells injury and proliferation following sub-chronic exposure to ultrafine carbon black inhalation. Wistar rats were exposed nose-only to ufCB(600,000 #/cm3, 6 hour/day, 5 day/week) for 13 weeks. One day after the last exposure, rats were sacrificed. Result showed that there were no significantly increased in total inflammatory cells, including neutrophils, after 13 weeks exposure. However, lactate dehydrogenase(LDH) activity was significantly increased in ufCB exposure group, which suggested that lung epithelial cells were injured after sub-chronic inhalation exposure. Nevertheless, basement membrane might be still intact, due to non-significant change of desmosine in the bronchoalveolar lavage fluid(BALF). Histopathological examination of lung tissue showed that epithelial cells hyperplasia and granulomatous inflammation occurred in alveolar region in ufCB group. The increased percentage of type II cells stained positively for PCNA(PCNA labeling index), c-Met and p-c-Met staining was observed in ufCB group by IHC staining. This study suggests that the activation of c-Met may play a role in the proliferation of alveolar type II cells. Further study is warranted to explore the role of c-Met activation in ultrafine carbon black-induced early pathological changes.
André E, Stoeger T, Takenaka S, Bahnweg M, Ritter B, Karg E, et al. 2006. Inhalation of ultrafine carbon particles triggers biphasic pro-inflammatory response in the mouse lung. European Respiratory Journal 28:275-285.
Bai L, Shin S, Burnett RT, Kwong JC, Hystad P, van Donkelaar A, et al. 2020. Exposure to ambient air pollution and the incidence of lung cancer and breast cancer in the ontario population health and environment cohort. International Journal Of Cancer 146:2450-2459.
Barlow PG, Clouter-Baker A, Donaldson K, MacCallum J, Stone V. 2005. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages. Particle and Fibre Toxicology 2:1-14.
Belalcazar A, Azaña D, Perez CA, Raez LE, Santos ES. 2012. Targeting the met pathway in lung cancer. Expert review of Anticancer Therapy 12:519-528.
Brunekreef B, Beelen R, Hoek G, Schouten L, Bausch-Goldbohm S, Fischer P, et al. 2009. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the netherlands: The nlcs-air study. Research report (Health Effects Institute):5-71; discussion 73-89.
Cancer IAfRo. 2011. Iarc: Outdoor air pollution a leading environmental cause of cancer deaths:International Agency for Research on Cancer.
Chang, Chiu J-J, Chen S-L, Huang H-C, Chiu H-F, Lin B-H, et al. 2012. Activation of HGF/c-Met signaling by ultrafine carbon particles and its contribution to alveolar type II cell proliferation. American Journal of Physiology-Lung Cellular and Molecular Physiology 302:L755-L763.
Cho CC, Hsieh WY, Tsai CH, Chen CY, Chang HF, Lin CS. 2018. In vitro and in vivo experimental studies of PM2.5 on disease progression. Int J Environ Res Public Health 15.
Chu C, Zhou L, Xie H, Pei Z, Zhang M, Wu M, et al. 2019. Pulmonary toxicities from a 90-day chronic inhalation study with carbon black nanoparticles in rats related to the systemical immune effects. International Journal of Nanomedicine 14:2995.
Chuang K-J, Yan Y-H, Chiu S-Y, Cheng T-J. 2011. Long-term air pollution exposure and risk factors for cardiovascular diseases among the elderly in taiwan. Occupational and Environmental Medicine 68:64-68.
Driscoll KE, Carter JM, Howard BW, Hassenbein DG, Pepelko W, Baggs RB, et al. 1996. Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicology and Applied Pharmacology 136:372-380.
Driscoll KE, Deyo LC, Carter JM, Howard BW, Hassenbein DG, Bertram TA. 1997. Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis 18:423-430.
ECETOC. 2013. Poorly soluble particles/lung overload. European Centre for Exotoxicology and Toxicology of Chemicals.
Elder A, Gelein R, Finkelstein JN, Driscoll KE, Harkema J, Oberdörster Gn. 2005. Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation, and histopathology. Toxicological Sciences 88:614-629.
Environmental Protection Administration EY. 2018. 空氣品質標準法規.
Feng Y, Thiagarajan PS, Ma PC. 2012. Met signaling: Novel targeted inhibition and its clinical development in lung cancer. Journal of Thoracic Oncology 7:459-467.
Gharibvand L, Beeson WL, Shavlik D, Knutsen R, Ghamsary M, Soret S, et al. 2017. The association between ambient fine particulate matter and incident adenocarcinoma subtype of lung cancer. Environmental Health 16:1-9.
Harkema JR, Wagner JG. 2019. Pathology of the respiratory system. In: Toxicologic pathology for non-pathologists:Springer, 311-354.
Harris RB, Zhou J, Youngblood BD, Rybkin II, Smagin GN, Ryan DH. 1998. Effect of repeated stress on body weight and body composition of rats fed low-and high-fat diets. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 275:R1928-R1938.
He F, Liao B, Pu J, Li C, Zheng M, Huang L, et al. 2017. Exposure to ambient particulate matter induced copd in a rat model and a description of the underlying mechanism. Scientific Reports 7:1-15.
Jacobsen NR, White PA, Gingerich J, Moller P, Saber AT, Douglas GR, et al. 2011. Mutation spectrum in FE1-muta(tm) mouse lung epithelial cells exposed to nanoparticulate carbon black. Environ Mol Mutagen 52:331-337.
Jensen‐Taubman SM, Steinberg SM, Linnoila RI. 1998. Bronchiolization of the alveoli in lung cancer: Pathology, patterns of differentiation and oncogene expression. International Journal Of Cancer 75:489-496.
Kadara H, Scheet P, Wistuba, II, Spira AE. 2016. Early events in the molecular pathogenesis of lung cancer. Cancer Prev Res (Phila) 9:518-527.
Kalluri R, Weinberg RA. 2009. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation 119:1420-1428.
Kitamura H, Kameda Y, Ito T, Hayashi H. 1999. Atypical adenomatous hyperplasia of the lung: Implications for the pathogenesis of peripheral lung adenocarcinoma. American Journal Of Clinical Pathology 111:610-622.
Kreyling WG, Semmler-Behnke M, Takenaka S, Möller W. 2013. Differences in the biokinetics of inhaled nano-versus micrometer-sized particles. Accounts of Chemical Research 46:714-722.
Lanki T, Hampel R, Tiittanen P, Andrich S, Beelen R, Brunekreef B, et al. 2015. Air pollution from road traffic and systemic inflammation in adults: A cross-sectional analysis in the european escape project. Environmental Health Perspectives 123:785-791.
Lepeule J, Laden F, Dockery D, Schwartz J. 2012. Chronic exposure to fine particles and mortality: An extended follow-up of the harvard six cities study from 1974 to 2009. Environmental Health Perspectives 120:965-970.
Li M-H, Fan L-C, Mao B, Yang J-W, Choi AM, Cao W-J, et al. 2016. Short-term exposure to ambient fine particulate matter increases hospitalizations and mortality in copd: A systematic review and meta-analysis. Chest 149:447-458.
Li R, Kou X, Geng H, Xie J, Yang Z, Zhang Y, et al. 2015. Effect of ambient pm(2.5) on lung mitochondrial damage and fusion/fission gene expression in rats. Chem Res Toxicol 28:408-418.
Li S, Williams G, Jalaludin B, Baker P. 2012. Panel studies of air pollution on children’s lung function and respiratory symptoms: A literature review. Journal of Asthma 49:895-910.
Li Y, Yang M, Meng T, Niu Y, Dai Y, Zhang L, et al. 2020. Oxidative stress induced by ultrafine carbon black particles can elicit apoptosis in vivo and vitro. Sci Total Environ 709:135802.
Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, et al. 2013. The carcinogenicity of outdoor air pollution. Lancet Oncology 14:1262.
Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA, et al. 2005. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering rna in non–small cell lung cancer. Cancer research 65:1479-1488.
Marshall EA, Ng KW, Kung SH, Conway EM, Martinez VD, Halvorsen EC, et al. 2016. Emerging roles of t helper 17 and regulatory T cells in lung cancer progression and metastasis. Molecular Cancer 15:1-15.
Muhlfeld C, Rothen-Rutishauser B, Blank F, Vanhecke D, Ochs M, Gehr P. 2008. Interactions of nanoparticles with pulmonary structures and cellular responses. American Journal of Physiology-Lung Cellular and Molecular Physiology 294:L817-L829.
Nakano-Narusawa Y, Yokohira M, Yamakawa K, Ye J, Tanimoto M, Wu L, et al. 2021. Relationship between lung carcinogenesis and chronic inflammation in rodents. Cancers 13.
Nemmar A, Holme JA, Rosas I, Schwarze PE, Alfaro-Moreno E. 2013. Recent advances in particulate matter and nanoparticle toxicology: A review of the in vivo and in vitro studies. BioMed research international 2013.
Niranjan R, Thakur AK. 2017. The toxicological mechanisms of environmental soot (black carbon) and carbon black: Focus on oxidative stress and inflammatory pathways. Frontiers in Immunology 8:763.
Ongay S, Sikma M, Horvatovich P, Hermans J, Miller BE, Ten Hacken NH, et al. 2016. Free urinary desmosine and isodesmosine as copd biomarkers: The relevance of confounding factors. Chronic Obstructive Pulmonary Diseases 3:560.
Organ SL, Tsao M-S. 2011. An overview of the c-Met signaling pathway. Therapeutic Advances in Medical Oncology 3:S7-S19.
Oyabu T, Morimoto Y, Izumi H, Yoshiura Y, Tomonaga T, Lee B-W, et al. 2016. Comparison between whole-body inhalation and nose-only inhalation on the deposition and health effects of nanoparticles. Environmental Health and Preventive Medicine 21:42-48.
Peschard P, Park M. 2007. From tpr-met to met, tumorigenesis and tubes. Oncogene 26:1276-1285.
Puett RC, Hart JE, Yanosky JD, Spiegelman D, Wang M, Fisher JA, et al. 2014. Particulate matter air pollution exposure, distance to road, and incident lung cancer in the nurses’ health study cohort. Environmental Health Perspectives 122:926-932.
Pujalte I, Dieme D, Haddad S, Serventi AM, Bouchard M. 2017. Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats. Toxicology Letters 265:77-85.
Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et al. 2013. Air pollution and lung cancer incidence in 17 european cohorts: Prospective analyses from the european study of cohorts for air pollution effects (escape). The Lancet Oncology 14:813-822.
Raaschou-Nielsen O, Beelen R, Wang M, Hoek G, Andersen ZJ, Hoffmann B, et al. 2016. Particulate matter air pollution components and risk for lung cancer. Environment international 87:66-73.
Ragettli MS, Ducret-Stich RE, Foraster M, Morelli X, Aguilera I, Basagana X, et al. 2014. Spatio-temporal variation of urban ultrafine particle number concentrations. Atmospheric Environment 96:275-283.
Renwick LC, Brown D, Clouter A, Donaldson K. 2004. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61:442-447.
Rice MB, Ljungman PL, Wilker EH, Dorans KS, Gold DR, Schwartz J, et al. 2015. Long-term exposure to traffic emissions and fine particulate matter and lung function decline in the framingham heart study. American Journal of Respiratory and Critical Care Medicine 191:656-664.
Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. 2007. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:1190-1203.
Saleh Y, Antherieu S, Dusautoir R, Y Alleman L, Sotty J, De Sousa C, et al. 2019. Exposure to atmospheric ultrafine particles induces severe lung inflammatory response and tissue remodeling in mice. International Journal Of Environmental Research and Public Health 16:1210.
Schins RP, Knaapen AM. 2007. Genotoxicity of poorly soluble particles. Inhal Toxicol 19 Suppl 1:189-198.
Schwotzer D, Ernst H, Schaudien D, Kock H, Pohlmann G, Dasenbrock C, et al. 2017. Effects from a 90-day inhalation toxicity study with cerium oxide and barium sulfate nanoparticles in rats. Part Fibre Toxicol 14:23.
Schwotzer D, Niehof M, Schaudien D, Kock H, Hansen T, Dasenbrock C, et al. 2018. Cerium oxide and barium sulfate nanoparticle inhalation affects gene expression in alveolar epithelial cells type II. Journal of Nanobiotechnology 16:1-25.
Shi L, Zanobetti A, Kloog I, Coull BA, Koutrakis P, Melly SJ, et al. 2016. Low-concentration PM2.5 and mortality: Estimating acute and chronic effects in a population-based study. Environmental Health Perspectives 124:46-52.
Straif K, Cohen A, Samet J. 2013. Air pollution and cancer. International Agency for Research on Cancer.
Sun R, Zhou Q, Ye X, Takahata T, Ishiguro A, Kijima H, et al. 2013. A change in the number of ccsppos/spcpos cells in mouse lung during development, growth, and repair. Respiratory investigation 51:229-240.
Taylor EM, Lindsay HD. 2016. DNA replication stress and cancer: Cause or cure? Future Oncology 12:221-237.
Tseng C-H, Tsuang B-J, Chiang C-J, Ku K-C, Tseng J-S, Yang T-Y, et al. 2019. The relationship between air pollution and lung cancer in nonsmokers in taiwan. Journal of Thoracic Oncology 14:784-792.
WHO. 2018. Ambient (outdoor) air pollution. Available: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
Wong BA. 2007. Inhalation exposure systems: Design, methods and operation. Toxicologic Pathology 35:3-14.
Xing Y-F, Xu Y-H, Shi M-H, Lian Y-X. 2016. The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease 8:E69.
Yang D, Ma M, Zhou W, Yang B, Xiao C. 2017. Inhibition of mir-32 activity promoted emt induced by PM2.5 exposure through the modulation of the Smad1-mediated signaling pathways in lung cancer cells. Chemosphere 184:289-298.
Zauli Sajani S, Ricciardelli I, Trentini A, Bacco D, Maccone C, Castellazzi S, et al. 2015. Spatial and indoor/outdoor gradients in urban concentrations of ultrafine particles and PM 2.5 mass and chemical components. Atmospheric Environment 103:307-320.
Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, et al. 2018. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Molecular Cancer 17:1-14.
Zhao C, Liao J, Chu W, Wang S, Yang T, Tao Y, et al. 2012. Involvement of TLR2 and TLR4 and Th1/Th2 shift in inflammatory responses induced by fine ambient particulate matter in mice. Inhal Toxicol 24:918-927.
陳惟瑄. 2020. <建立新型可由電腦程式控制的氣膠生成與呼吸暴露系統暴露於大鼠的呼吸毒理研究.Pdf>.
校內:2026-09-15公開