| 研究生: |
徐梓青 Hsu, Tzu-Ching |
|---|---|
| 論文名稱: |
應用溴化鋰吸濕脫水系統於奈米陶瓷漿料乾燥之研究 Study of Drying Nanoceramic Colloid by A LiBr Absorption/Exhaust System |
| 指導教授: |
邱政勳
Chiou, Jenq-Shing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 奈米陶瓷粉體 、凝聚 、真空乾燥 、溴化鋰水溶液 |
| 外文關鍵詞: | nanoceramic powder, agglomeration, vacuum drying, aqueous Lithium Bromide solution |
| 相關次數: | 點閱:114 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從漿料的乾燥來得到粉體的過程中,一般都會面臨顆粒凝聚的問題,此凝聚的現象會因顆粒的奈米化而更趨嚴重;目前業界與學界對奈米陶瓷微粒有不同的乾燥方法,但每種方法都有不同程度的凝聚問題也都各有缺點。基於液體會在真空環境下會瞬間汽化,且膨脹的力量可以抵消粒子間的吸引力,所以本研究利用真空乾燥來避免或減輕粒子之凝聚。
在乾燥實驗中,吾人使用不同的乾燥方式處理奈米θ-Al2O3微粒漿料,並以乾粉回衝於水中的再分散度當作品質好壞的依據;結果顯示,真空乾燥因為可在較低溫度下進行脫水動作,所以品質較常壓下高溫處理的乾粉要好,更值得注意的是在真空環境下使用微波給熱,因為加熱快速且均勻,所以乾粉回衝後幾乎可以回覆到和原始漿料相同的粒徑分佈。
雖然真空乾燥早已被使用,但尚未被用在含水量較多的場合,因為真空腔內水份的汽化會使體積迅速地膨脹,很容易因為壓力的升高失去真空度而終止汽化的連續性,而且使用真空泵浦抽除水汽相當不切實際;因此,本研究依據溴化鋰吸收式冷凍系統的概念建立了一連續性吸濕脫水系統,可連續性地在真空腔內吸收汽化的水汽,並將所吸收之水排出真空腔體來維持低壓真空環境。
為了提升系統的吸濕能力,實驗測試中改變吸收器內不同冷卻水排管形式作為比較;結果顯示,短針鰭型冷卻管因為有效熱傳面積較大,使得整體效能比平滑型冷卻管要好;而在短針鰭型管間加裝平行銅鰭片後,整體效能與未加裝者差異不大。最後則是在溶液中加入少量二乙基己醇進行測試,其可強化之吸濕效果相當地顯著,但因為系統為開放式,二乙基己醇的蒸氣會被排到環境產生惱人的氣味,所以需要尋找其它可用的替代品。實現此真空環境下連續脫除水汽的系統即是本研究最重要的成果,也是對於奈米陶瓷粉體的量產邁向實用化的一大步。
It is well known that drying of liquid-borne powders will create agglomerates and the problem of agglomeration is particularly acute in the range of nano-scale size. There are many kinds of drying process for nano-particles, each one has its advantage and limitation but none of them can be free from particle agglomeration. Since the liquid water will instantaneously flush into steam under the condition where the pressure is below its saturated state, and the outward expansion force during flashing is able to counteract the attracting force among particles, it is thus reasonable to use vacuum dry technique to prevent/mitigate agglomeration.
In the tests of drying θ-Al2O3 colloid (solution of nano-particles and water), we used other drying methods to compare with our proposed vacuum drying. The degree of re-dispersibility obtained from each dried powder was taken as the level of product quality. The results indicated that the quality of powders from vacuum drying were better than that from others. Especially when the vacuum drying added microwave energy heating, the re-dispersed powders can almost return to the state of original colloid.
Although the vacuum dry technology had been used in the fields of drying solid food, timber and medicine powder, this technology has not been used in the situation when the water-content percentage is high. The behind reason may be due to the fact that the flashing process of water will be terminated once the environment pressure rise above saturation state due to the tremendous volume expansion when liquid water converts to vapor. This study proposed the concept of LiBr-H2O absorption cooling system, which can continuously absorb the expanded steam in the vacuum chamber and keep the chamber pressure below the saturated value.
To promote the absorption rate of steam, we changed different kinds of cooling-tube-bundle. The results show that the bundle made by low-fin-tube has a slightly better efficiency than that the one made by smooth-tube, and the enhanced effect of using flat plate connected between the upper and lower tubes was found to be insignificant. By adding a small amount of 2-ethyl-hexanol into LiBr solution was found very effective to improve the ability of absorption. However, the exhausted steam containing 2-ethyl-hexanol would have a strong bad order and may contaminate the nearby environment.
The most important contribution of this study is to demonstrate that our designed device can continuously absorb and expel steam from the vacuum chamber, which indeed is the most important step to achieve applying the vacuum drying device for mass production.
1.Advanced ceramic powders and nano ceramic powders, Bussuness Communications Co., Inc. (BCC) report, 2003.
2.L. D. Zhang, Nanomaterials, Chemical Industry Press, China, 2000.
3.W. L. Luna, L. Gao and J. K. Guo, 「Study on Drying Stage of Nanoscale Powders Preparation」, Nanostructured Materials, 10(7), 1119-1125, 1998.
4.G. M. Chow and N. I. Noskova, Nanostructured Materials: Science and Technology, Kluwer Academic Publishers, Amsterdam, 1997.
5.F. F. Lange, 「Powder Processing Science and Technology for Increased Reliability」, Journal of the American Ceramic Society, 72(1), 3-15, 1989.
6.李玄閔, 不同粒徑分佈與凝聚狀態之α氧化鋁粉末的成型及燒結行為, 國立成功大學資源工程研究所, 碩士論文, 2004.
7.B. Wang and W. Zhang, 「Progress in Drying Technology for Nanomaterials」, Drying Technology, 23, 7-23, 2005.
8.R. E. M. Verdurmen, G. V. Houwelingen, M. Gunsing, M. Verschueren and J. Straatsma, 「Agglomeration in Spray Drying Installations (the EDECAD project): Stickiness Measurements and Simulation Results」, Drying Technology, 24, 721-726. 2006.
9.O. Alves-Filho and Y. H. Roos, 「Advances in Multi-Purpose Drying Operations with Phase and State Transitions」, Drying Technology, 24, pp. 383-396, 2006.
10.K. Masters, Spray Drying Handbook, Longman Science & Technical, England, 1991.
11.F. Iskandar, L. Gradon and K. Okuyama, 「Control of Morphology of Nano-Structured Particles Prepared by the Spray Drying of a Nanoparticle」, Journal of Colloid and Interface Science, 265, 296-303, 2003.
12.R. F. Schiffiman, 「Microwave and Dielectric Drying」, Handbook of Industrial Drying, Marcel Dekker, New York, 345-372, 1995.
13.P. Y. Mc Cormick, 「Solids-drying fundamentals」, 4-16 of chapter 20 in Chemical Engineers Handbook, 5th, edited by R. H. Perry, C. H. Chilton, McGraw-Hill Co., London, 1973.
14.G. W. Scherer, 「Theory of Drying」, Journal of American Ceramic Society, 73(1), 3-14, 1990.
15.G. W. Scherer, 「Freezing Gel」, Journal of Non-Crystalline Solids, 155, 1-25, 1993.
16.G. Chen and W. Wang, 「Role of Freeze Drying in Nanotechnology」, Drying Technology, 25, 29-35, 2007.
17.J. Lee and Y. Cheng, 「Critical Freezing Rate in Freeze Drying Nanocrystal Dispersions」, Journal of Controlled Release, 111, 185-192, 2006.
18.Z. Novak, Z. Knez and I. Ban, 「Synthesis of Barium Titanate using Supercritical CO2 Drying」, Journal of Supercritical Fluids, 19, 209-215, 2001.
19.T. Y. Peng, P. W. Du, B. Hu and Z. C. Jiang, 「Preparation of Nanoscale Alumina Powder by Heterogeneous Azeotropic Distillation Processing」, Journal of Inorganic Materials, 15(6), 1097-1101, 2000.
20.W. Kaensup, S. Chutima and S. Wongwises, 「Experimental Study on Drying of Chilli in a Combined Microwave-Vacuum-Rotary Drum Dryer」, Drying Technology, 20(10), 2067-2079, 2002.
21.C. D. Clary, S. Wang and V. E. Petrucci, 「Fixed and Incremental of Microwave Power Application in Drying Grapes under Vacuum」, Journal of Food Science, 70(5), 344-349, 2005.
22.D. Setiady, C. Clary, F. Younce and B. A. Rasco, 「Optimizing Drying Conditions for Microwave -Vacuum (MIVAC) Drying of Russet Potatoes (Solanum Tuberosum)」, Drying Technology, 25(9), 1483-1489, 2007.
23.X. J. Song, M. Zhang, A. S. Mujumdar and L. Fan, 「Drying Characteristics and Kinetics of Vacuum Microwave-Dried Potato Slices」, Drying Technology, 27(9), 969-974, 2009.
24.V. Mottonen, 「Variation in Drying Behavior and Final Moisture Content of Wood during Conventional Low Temperature Drying and Vacuum Drying of Betula Pendula Timber」, Drying Technology, 24, 1405-1413, 2006.
25.X. J. Li, B. G. Zhang and W. A. Li, 「Microwave-Vacuum Drying of Wood: Model Formulation and Verification」, Drying Technology, 26, 1382-1387, 2008.
26.G. Farrel, W. A. M. McMinn and T. R. A. Magee, 「Microwave-Vacuum Drying Kinetics of Pharmaceutical Powders」, Drying Technology, 23, 2131-2146, 2005.
27.H. Rumpf and H. Schubert, 「Adhesion Forces in Agglomeration Processes」 in Ceramic Processing before Firing, Edited by G. Y. Onoda Jr., L. L. Hench, Wiley, New York, 1978.
28.M. N. Rahaman, Ceramic Processing and Sintering, New York, 1995.
29.H. Van Olphen, Clay Colloid Chemistry, 2nd, John Wiley & Sons, New York, 35-42, 1977.
30.J. A. Lewis, 「Colloidal Processing of Ceramics」, Journal of American Ceramic Society, 83(10), 2341-2359, 2000.
31.M. Kitayama and J. A. Pask, 「Formation and Control of Agglomerates in Alumina Powder」, Journal of American Ceramic Society, 79(8), 2003-2011, 1996.
32.A. Maskrar and D. M. Smith, 「Agglomeration during the Drying of Fine Silica Powders, Part II: The Role of Particle Solubility」, Journal of American Ceramic Society, 80(7), 1715-1722, 1997.
33.D. E. Niesz and R. B. Bennett, 「Agglomerate Structure and Properties」, 61-74 in Ceramic Processing before Firing, Edited by G. Y. Onoda Jr., L. L. Hench, Wiley, New York, 1978.
34.S. L. Jones and C. J. Norman, 「Dehydration of Hydrous Zirconia with Methanol」, Journal of American Ceramic Society, 71(4), C190-C191, 1988.
35.M. S. Kaliszewski and A. H. Heuer, 「Alcohol Interaction with Zorconia Powders」, Journal of American Ceramic Society, 73(6), 1504-1509, 1990.
36.A. A. Berestneff, 「Absorption refrigeration」, Mechanical Engineering, 72, 216-220, 1949.
37.W. F. Stoecker, Design of Thermal System, 3rd edition, McGraw-Hill Co., 328-350, 1989.
38.W. C. Whitman, W. M. Johnson et al., Refrigeration & Air Conditioning Technology, 4th edition, Delmar Thomson Learning, 1031-1041, 2000.
39.P. Srikhirin, S. Aphornratana and S. Chungpaibulpatana, 「A Review of Absorption Refrigeration Technologies」, Renewable and Sustainable Energy Review, 5, 343-372, 2001.
40.J. D. Killion and S. Garimella, 「A Critical Review of Models of Coupled Heat and Mass Transfer in Falling-Film Absorption」, International Journal of Refrigeration, 24, 755-797, 2001.
41.G. A. Florides, S. A. Kalogirou, S. A. Tassou and L. C. Wrobel, 「Design and Construction of a LiBr-Water Absorption Machine」, Energy Conversion and Management, 44, 2483-2508, 2003.
42.A. Sencan, K. A. Yakut and S. A. Kalogirou, 「Exergy Analysis of Lithium Bromide/Water Absorption Systems」, Renewable Energy, 30, 645-657, 2005.
43.Y. T. Kang, Y. Kunugi and T. Kashiwagi, 「Review of Advanced Absorption Cycles: Performance Improvement and Temperature Life Enhancement」, International Journal of Refrigeration, 23, 388-401, 2000.
44.M. Kilic, O. Kaynakli, 「Second Law-Based Thermodynamic Analysis of Water-Lithium Bromide Absorption Refrigeration System」, Energy, 32, 1505-1512, 2007.
45.R. D. Misra, P. K. Sahoo, S. Sahoo and A. Gupta, 「Thermoeconomic Optimization of a Single Effect Water/LiBr Vapour Absorption Refrigeration System」, International Journal of Refrigeration, 26, 158-169, 2003.
46.F. Cosenza, 「Absorption in Falling Water/LiBr Films on Horizontal Tubes」, ASHRAE Transactions, 96(1), 693-701, 1990.
47.K. J. Kim and N. S. Berman, 「Absorption of Water Vapour into Falling Films of Aqueous Lithium Bromide」, International Journal of Refrigeration, 18(7), 486-494, 1995.
48.L. Hoffman, 「Experimental Investigation of Heat Transfer in a Horizontal Tube Falling Film Absorber with Aqueous Solutions of LiBr with and without Surfactants」, International Journal of Refrigeration, 19(5), 331-341, 1996.
49.J. I. Yoon, E. Kim, K. H. Choi and W. S. Seol, 「Heat Transfer Enhancement with a Surface on Horizontal Bundle Tubes of an Absorber」, International Journal of Heat and Mass Transfer, 45, 735-741, 2002.
50.S. M. Deng and W. B. Ma, 「Experimental Studies on the Characteristics of an Absorber using LiBr/H2O Solutions as Working Fluid」, International Journal of Refrigeration, 22, 293-301, 1999.
51.I. S. Kyung and K. E. Herold, 「Performance of Horizontal Smooth Tube Absorber with and without 2-Ethyl-Hexanol」, Journal of Heat Transfer, 124, 177-183, 2002.
52.C. W. Park, H. C. Cho and Y. T. Kang, 「The Effect of Heat Transfer Additive and Surface Roughness of Micro-Scale Hatched Tubes on Absorption Performance」, International Journal of Refrigeration, 27, 264-270, 2004.
53.D. Bredow, P. Jain, A. Wohlfeil and F. Ziegler, 「Heat and mass Transfer Characteristics of a Horizontal Tube Absorber in a Semi-Commercial Absorption Chiller」, International Journal of Refrigeration, 31, 1273-1281, 2008.
54.T. Kashiwagi, 「Basic Mechanism of Absorption Heat and Mass Transfer Enhancement by the Marangoni Effect」, Newsletter, IEA Heat Pump Center, 6(4), 2-6, 1988.
55.M. Hozawa, M. Inoue, J. Sato, T. Tsukada and N. Imaishi, 「Marangoni Convection during Steam Absorption into Aqueous LiBr Solution with Surfactant」, Journal of Chemical Engineering of Japan, 24(2), 209-214, 1991.
56.H. Daiguji, E. Hihara and T. Saito, 「Mechanism of Absorption Enhancement by Surfactant」, International Journal of Heat and Mass Transfer, 40(8), 1743-1752, 1997.
57.Z. Yuan and K. E. Herold, 「Surface Tension of Pure Water and Aqueous Lithium Bromide with 2-Ethyl-Hexanol」, Applied Thermal Engineering, 21, 881-897, 2001.
58.S. Kulankara and K. E. Herold, 「Surface Tension of Aqueous Lithium Bromide with Heat/Mass Transfer Enhancement Additives: the Effect of Additive Vapor Transport」, International Journal of Refrigeration, 25, 383-389, 2002.
59.K. J. Kim, N. B. Berman and B. D. Wood, 「The Interfacial Turbulence in Falling Film Absorption: Effects of Additives」, International Journal of Refrigeration, 19(5), 322-330, 1996.
60.李崇江, 嚴智潘, 「吸收式冰水機原理、系統與運轉維護」, 吸收式冷凍空調技術專輯, 中華民國冷凍空調學會, 72-87, 1999.
61.工研院能資所, 「溴化鋰溶液在水平管上的薄膜吸收研究」, 吸收式冷凍空調技術專輯, 中華民國冷凍空調學會, 236-241, 1999.
62.K. J. Kim, N. S. Berman, 「Surface Tension of Aqueous Lithium Bromid + 2-Ethyl-1-Hexanol」, Journal of Chemical & Engineering Data, 39, 122-124, 1994.
63.林天鈞, 前導物之粒徑對由Gibbsite獲得α-Al2O3過程之影響, 國立成功大學資源工程研究所, 碩士論文, 2005.
64.S. Desset, O. Spalla and B. Cabane, 「Redispersion of Alumina Particles in Water」, Langmuir, 16, 10495-10508, 2000.
65.A. L. Valdivieso, J. L. Reyes Bahena, S. Song and R. H. Urbina, 「Temperature Effect on the Zeta Potential and Fluoride Adsorption at the α-Al2O3/aqueous Solution Interface」, Journal of Colloid and Interface Science, 298, 1-5, 2006.
66.G. Grossman, Modular Simulation of Absorption Systems - User』s Guide and Reference, Oak Ridge National Laboratory (ORNL), Tennessee, 1998.
67.陳志宇, 溴化鋰吸濕系統之熱性能分析, 國立成功大學機械工程研究所, 碩士論文, 2010.
68.V. M. S. Frances and J. M. P. Ojer, 「Multi-Factorial Study of the Absorption Process of H2O (vap) by a LiBr (aq) in a Horizontal Tube Bundle using 2-Ethyl-1-Hexanol as Surfactant」, International Journal of Heat and Mass Transfer, 47, 3355-3373, 2004.
69.工研院能資所, 「溴化鋰溶液的性質」, 吸收式冷凍空調技術專輯, 中華民國冷凍空調學會, 14-23, 1999.
70.Y. A. Cengel, Heat and Mass Transfer, 3rd Edition, Mc Graw Hill, 451-501, 2006.
校內:2020-12-30公開