簡易檢索 / 詳目顯示

研究生: 周詩詠
Jhou, Shih-Yong
論文名稱: 奈米碳纖維強化發泡聚醯亞胺複合材料合成與性質之研究
Synthesis and properties of carbon nanofibers reinforced polyimide composite foams
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 110
中文關鍵詞: 聚醯亞胺發泡高分子奈米碳纖維奈米複合材料
外文關鍵詞: Polyimide, Polyimide foams, Carbon nanofibers, Nanocomposite
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發泡聚醯亞胺高分子(polyimide foams,PIF)是一種具有聚醯亞胺分子結構的耐高溫的多孔性材料。它有輕量化、耐熱性、耐化學藥品性、耐燃性及低熱導度等性,可以作為隔熱、吸音或阻燃材料,應用於火箭、飛彈、太空船、飛機、高速火車等高科技領域。
    本研究將採用兩溶液一步驟(one pot)法來製備發泡聚醯亞胺高分子,其中第一溶液包含二酸酐(dianhydride)、DMF 溶劑、水、甲醇、界面活性 劑及觸媒,第二溶液是異氰酸酯(isocyanate),發泡過程將在常溫進行。加入界面活性劑是為了提高發泡聚醯亞胺高分子的孔隙尺寸分佈的均勻性。加入觸媒是為了促進二酸酐和異氰酸酯的反應。另外,水含量及甲 醇含量,都會對孔洞結構及性能產生影響,所以本研究將透過改變水和甲醇的比例,合成出不同含水量和甲醇含量的發泡聚醯亞胺高分子,再將所合成出的發泡聚醯亞胺高分子進行結構鑑定與性質分析。
    另外,本研究使用 4-氨基苯甲酸 (4-aminobenzoic acid, ABA) 對奈米
    碳纖維 (carbon nanofibers, CNF) 進行表面改質,並將經改質之奈米碳纖
    維摻入第一溶液中,以製備發泡聚醯亞胺/奈米碳纖維之複合材料,並另外分析其對發泡聚醯亞胺高分子之性能的影響。使用奈米碳纖維的目的為替代製程複雜而非常昂貴的奈米碳管(carbon nanotubes, CNT)。與純發泡聚醯亞胺高分子相比,發泡聚醯亞胺/奈米碳纖維之複合材料具有更佳的熱安定性與更高的機械強度。

    We synthesized polyimide foams (PIF) by one-pot (two solution) method. The first solution contained dianhydride, DMF solvent, water, methanol, surfactant, and catalyst. The second solution was isocyanate, and the blowing process was carried out at room temperature. The surfactant was added to improve the uniformity of the cell size. The catalyst was added to promote the reaction of dianhydride and isocyanate. In addition, both water and methanol content will affect the microstructures and properties, so PIFs were synthesized using different amount of water and methanol.
    In addition, 4-aminobenzoic acid (ABA) was used to modify carbon nanofibers (CNF), and CNF was added into the first solution to synthesize polyimide nanocomposite foams. Then, their effects on the properties of the PIFs were analyzed. The purpose of using CNFs was to replace carbon nanotubes (CNT), which are very expensive. Compared with pristine PIFs, the polyimide nanocomposite foams had better thermal stability and higher mechanical strength.

    摘要......................................................... i Extended Abstract ............................................ii 致謝 ........................................................ xii 表目錄 ...................................................... xvii 圖目錄 ...................................................... xix 第一章 緒論...................................................1 1.1 前言......................................................1 1.2 研究動機與的..............................................4 1.3 研究架構..................................................5 第二章 文獻回顧與原理.........................................6 2.1 聚醯亞胺之介紹............................................6 2.2 發泡聚醯亞胺之介紹........................................9 2.3 發泡聚醯亞胺的合成方法....................................9 2.3.1 兩步驟法(two-step polyester-amine salt precursor powders foaming method).......................................................10 2.3.2 兩溶液一步驟法(one-pot method)..........................12 2.4 發泡的原理[31]............................................19 2.4.1 氣泡的形成..............................................19 2.4.2 氣泡的成長..............................................20 2.5 發泡劑(Blowing Agents) [31]...............................21 2.5.1 物理發泡劑(Physicalblowingagents).......................21 2.5.2 化學發泡劑(chemical blowing agents) ....................22 2.6 界面活性劑(Surfactants)...................................23 2.7 奈米碳纖維的特性..........................................24 2.8 奈米碳纖維的表面改質......................................27 2.8.1 Friedel-Crafts acylation 反應...........................30 2.8.2 使用 4-氨基苯甲酸(4-aminobenzoic acid ; ABA)進行表面改 質............................................................32 2.9 奈米材料作為聚合物之補強材料..............................34 2.9.1 奈米碳材料作為聚合物之補強材料..........................35 第三章 實驗方法與步驟.........................................40 3.1 實驗藥品..................................................40 3.2 實驗儀器..................................................41 3.3 實驗步驟..................................................42 3.3.1 不同水含量與甲醇含量之發泡聚醯亞胺之製備................42 3.3.2 以Friedel-Craftsacylation改質氣相成長奈米碳纖維.........46 3.3.3 奈米碳纖維分散溶液製備..................................49 3.3.4 發泡聚醯亞胺/奈米碳纖維複合材料之製備...................50 3.4 實驗分析與原理............................................52 3.4.1 傅立葉轉換紅外線光譜儀分析(FT-IR).......................52 3.4.2 化學分析電子光譜儀(ESCA)................................52 3.4.3 熱重損失分析儀(TGA).....................................52 3.4.4 場發射掃描式電子顯微鏡(HR-FESEM)........................53 3.4.5 熱機械分析儀(TMA).......................................54 3.4.6 水銀測孔儀(Mercury Porosimeter).........................54 3.4.7 熱傳導係數分析儀(Hot Disk) .............................54 3.4.8 機械性值分析............................................55 第四章 結果與討論.............................................56 4.1 氣相成長奈米碳纖維之改質..................................56 4.1.1 傅立葉轉換紅外線光譜儀分析.............................56 4.1.2 化學分析電子光譜........................................58 4.1.3 熱重損失分析............................................60 4.2 發泡聚醯亞胺及奈米碳纖維補強發泡聚醯亞胺複合材料之製備....61 4.2.1 傅立葉轉換紅外線光譜分析................................62 4.2.2 場發射掃描式電子顯微鏡分析..............................65 4.2.3 熱重損失分析............................................73 4.2.4 熱機械分析..............................................77 4.2.5 密度分析................................................85 4.2.6 熱傳導係數分析..........................................87 4.2.7 機械性質分析............................................88 第五章 結論...................................................97 第六章 參考文獻...............................................99

    [1] E. S. Weiser, T. F. Johnson, T. L. St Clair, Y. Echigo, H. Kaneshiro, and B. W. Grimsley, “Polyimide foams for aerospace vehicles,” High Performance Polymers, vol. 12, pp. 1-12, 2000.
    [2] X. Y. Liu, M. S. Zhan, K. Wang, Y. Li, and Y. F. Bai, “Preparation and performance of a novel polyimide foam,” Polymers for Advanced Technologies, vol. 23, pp. 677-685, 2012.
    [3] C. I. Cano, E. S. Weiser, T. Kyu, and R. B. Pipes, “Polyimide foams from powder: Experimental analysis of competitive diffusion phenomena,” Polymer, vol. 46, pp. 9296-9303, 2005.
    [4] Y. X. Shen, M. S. Zhan, and K. Wang, “Effects of monomer structures on the foaming processes and thermal properties of polyimide foams,” Polymers for Advanced Technologies, vol. 21, pp. 704-709, 2010.
    [5] Y. X. Shen, M. S. Zhan, K. Wang, X. H. Li, and P. C. Pan, “The pyrolysis behaviors of polyimide foam derived from 3,3’,4,4’‐benzophenone tetracarboxylic dianhydride/4,4’‐oxydianiline,” Journal of applied polymer science, vol. 115, pp. 1680-1687, 2010.
    [6] Q. Yin, S. J. Wang, “Polyimide foams,” New Chemical Materials, vol. 31, pp. 15-17, 2003.
    [7] M. S. Zhan, X. Q. Xu, and L. Y. Pan, “Effect of water blowing agent on structures and properties of polyimide foams,” Journal of Aeronautical Materials,vol. 30, pp. 55-60, 2010.
    [8] F. Yu, K. Wang, X. Y. Liu, and M. S. Zhan, “Preparation and properties of rigid polyimide foams derived from dianhydride and isocyanate,” Journal of applied polymer science, vol. 127, pp. 5075-5081, 2013.
    [9] E. Ciecierska, M. Jurczyk-Kowalska, P. Bazarnik, M. Gloc, M. Kulesza, M. Kowalski, S. Krauze, and M. Lewandowska, “Flammability, mechanical properties and structure of rigid polyurethane foams with different types of carbon reinforcing materials,” Composite Structures, vol. 140,pp. 67-76, 2016.
    [10] M. M. A. Nikje, and Z. M. Tehrani, “The effects of functionality of the organifier on the physical properties of polyurethane rigid foam/organified nanosilica,” Designed Monomers and Polymers, vol. 14, pp. 263-272, 2011.
    [11] Z. Xu, X. Tang, and J. Zheng, “Thermal stability and flame retardancy of rigid polyurethane foams/organoclay nanocomposites,” Polymer-Plastics Technology and Engineering, vol. 47, pp. 1136-1141, 2008.
    [12] D. X. Yan, K. Dai, Z. D. Xiang, Z. M. Li, X. Ji, and W. Q. Zhang, “Electrical conductivity and major mechanical and thermal properties of carbon nanotube‐filled polyurethane foams,” Journal of applied polymer science, vol. 120, pp. 3014-3019, 2011.
    [13] M. C. Saha, M. E. Kabir, and S. Jeelani, “Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles,” Materials Science and Engineering: A, vol. 479, pp. 213-222, 2008.
    [14] D. X. Yan, L. Xu, C. Chen, J. H. Tang, X. Ji, and Z. M. Li, “Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes,” Polymer International, vol. 61, pp. 1107-1114, 2012.
    [15] T. Woo, P. Halley, D. Martin, and D. S. Kim, “Effect of different preparation routes on the structure and properties of rigid polyurethane‐layered silicate nanocomposites,” Journal of applied polymer science, vol. 102, pp. 2894-2903, 2006.
    [16] X. Cao, L. J. Lee, T. Widya, and C. Macosko, “Polyurethane/clay nanocomposites foams: processing, structure and properties,” Polymer, vol. 46, pp. 775-783, 2005.
    [17] E. Burgaz, and C. Kendirlioglu, “Thermomechanical behavior and thermal stability of polyurethane rigid nanocomposite foams containing binary nanoparticle mixtures,” Polymer Testing, vol. 77 , pp. 105930, 2019.
    [18] M. E. Kabir, M. C. Saha, and S. Jeelani, “Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite,” Materials Science and Engineering: A, vol.459, pp. 111-116, 2007.
    [19] M. C. Saha, M. E. Kabir, and S. Jeelani, “Effect of nanoparticles on mode-I fracture toughness of polyurethane foams,” Polymer composites, vol. 30, pp. 1058–1064, 2009.
    [20] P. Mondal, and D. V. Khakhar, “Rigid polyurethane–clay nanocomposite foams: preparation and properties,” Journal of Applied Polymer Science, vol. 103, pp. 2802-2809, 2007
    [21] L. Zhai, S. Y. Yang, and L. Fan, “Preparation and characterization of highly transparent and colorless semi-aromatic polyimide films derived from alicyclic dianhydride and aromatic diamines,” Polymer, vol. 53, pp. 3529-3539, 2012.
    [22] E. Pinel, M. F. Barthe, J. De Baerdemaeker, R. Mercier, S. Neyertz, N. D. Albérola, and C. Bas, “Copolyimides containing alicyclic and fluorinated groups: Characterization of the film microstructure,” Journal of Polymer Science Part B: Polymer Physics, vol.41, pp. 2998-3010, 2003.
    [23] 詹茂盛,王凱,“聚醯亞胺泡沫,” 國防工業出版社, pp.5, 2010.
    [24] J. Li, G. Zhang, J. Li, L.Zhou, Z. Jing, and Z. Ma, “Preparation and properties of polyimide/chopped carbon fiber composite foams,” Polymers for Advanced Technologies, vol. 28, pp. 28-34, 2017.
    [25] Y. J. Long, G. C. Zhang, T. Chen, H. C. Li, and S. L. Dong, “Synthesis route and preparation technology of polyimide foam,” China Synthetic Resin and Plastics, vol. 24, pp.68-72, 2007.
    [26] G. Sun, L. Liu, J. Wang, H. Wang, W. Wang, and S. Han, “Effects of hydrotalcites and tris (1-chloro-2-propyl) phosphate on thermal stability, cellular structure and fire resistance of isocyanate-based polyimide foams,” Polymer degradation and stability, vol. 115, pp. 1-15, 2015.
    [27] L. Yan, L. Fu, Y. Chen, H. Tian, A. Xiang, and A. V. Rajulu, “Improved thermal stability and flame resistance of flexible polyimide foams by vermiculite reinforcement,” Journal of Applied Polymer Science, vol. 134, pp. 44828(1-7), 2017.
    [28] G. Sun, W. Wang, L. Wang, Z. Yang, L. Liu, J. Wang, N. Ma, H. Wei, and S. Han, “Effects of aramid honeycomb core on the flame retardance and mechanical property for isocyanate‐based polyimide foams,” Journal of Applied Polymer Science, vol. 134, pp. 45041, 2017.
    [29] X. Y. Liu, M. S. Zhan, and K. Wang, “Thermal properties of the polyimide foam prepared from aromatic dianhydride and isocyanate,” High Performance Polymers, vol. 24, pp. 373-378, 2012. 

    [30] G. Sun, L. Liu, J. Wang, H. Wang, Z. Xie, and S. Han, “Enhanced polyimide proportion effects on fire behavior of isocyanate-based polyimide foams by refilled aromatic dianhydride method,” Polymer degradation and stability, vol. 110, pp. 1-12, 2014.
    [31] 潘國龍,“利用二氧化碳發泡製備抗熱之硬質發泡體研究,” 中興大學化學工程研究所學位論文, pp. 1-87, 2004.
    [32] L. Feng, N. Xie, and J. Zhong, “Carbon nanofibers and their composites: a review of synthesizing, properties and applications,” Materials, vol. 7, pp. 3919-3945, 2014.
    [33] F. W. J. van Hattum, P. Serp, J. L. Figueiredo, and C. A. Bernardo, “The effect of morphology on the properties of vapour-grown carbon fibres,” Carbon, vol. 35, pp. 860–863, 1997.
    [34] M. H. Al-Saleh and U. Sundararaj, “A review of vapor grown carbon nanofiber/polymer conductive composites,” Carbon, vol. 47, pp. 2–22, 2009.
    [35] T. Uchida, D. P. Anderson, M. L. Minus, and S. Kumar, “Morphology and modulus of vapor grown carbon nano fibers,” Journal of Materials Science, vol. 41, pp. 5851–5856, 2006.
    [36] M. H. Al-saleh and U. Sundararaj, “Composites : Part A Review of the mechanical properties of carbon nanofiber / polymer composites,” Composites Part A, vol. 42, pp. 2126–2142, 2011.
    [37] O. Breuer and U. Sundararaj, “Big returns from small fibers: A review of polymer/carbon nanotube composites,” Polymer composites, vol. 25, pp. 630–645, 2004.
    [38] G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, “A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites,” Composites Science and Technology, vol. 67, pp. 1709–1718, 2007.
    [39] I. C. Finegan and G. G. Tibbetts, “Electrical conductivity of vapor-grown carbon fiber/thermoplastic composites,” Journal of Materials Research, vol. 16, pp. 1668–1674, 2001.
    [40] K. I. Winey and R. A. Vaia, “Polymer nanocomposites,” MRS bulletin, vol. 32, pp. 314–322, 2007.
    [41] J. M. Keith, N. B. Janda, J. A. King, W. F. Perger, and T. J. Oxby, “Shielding effectiveness density theory for carbon fiber/nylon 6,6 composites,” Polymer composites, vol. 26, pp. 671–678, 2005.
    [42] M. S. P. Shaffer and A. H. Windle, “Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites,” Advanced materials, vol. 11, pp. 937–941, 1999.
    [43] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Physical review letters, vol. 87, pp. 215502-1-215502–4, 2001.
    [44] X. L. Xie, Y. W. Mai, and X. P. Zhou, “Dispersion and alignment of carbon nanotubes in polymer matrix: A review,” Materials science and engineering: R: Reports, vol. 49, pp. 89–112, 2005.
    [45] T. Wang and P. M. A. Sherwood, “X-ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces . 17 . Interfacial Interactions between Phenolic Resin and Carbon Fibers Electrochemically Oxidized in Nitric Acid and Phosphoric Acid Solutions , and Their Effect on Oxidation Behavior,” Chemistry of materials, vol. 6, pp. 788–795, 1994.
    [46] M. Polovina, B. Babic, B. Kaluderovic, and A. Dekanski, “Surface characterization of oxidized activated carbon cloth,” Carbon, vol. 35, pp. 1047–1052, 1997.
    [47] U. Zielke, K. J. Huttinger, and W. P. Hoffman, “Surface-oxidized carbon fibers: iv. interaction with high-temperature thermoplastics,” Carbon, vol. 34, pp. 1015–1026, 1996.
    [48] K. L. Ászlo, K. J. Osepovits, and E. T. Ombácz, “Analysis of Active Sites on Synthetic Carbon Surfaces by Various Methods,” The Japan Society for Analytical Chemistry, vol. 17, pp. 1741–1744, 2001.
    [49] H. Viswanathan, Y. Wang, A. A. Audi, P. J. Allen, and P. M. A. Sherwood, “X-ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces . 24 . Interfacial Interactions between Polyimide Resin and Electrochemically Oxidized PAN-Based Carbon Fibers,” Chemistry of materials, vol. 13, pp. 1647–1655, 2001.
    [50] Y. Wang, H. Viswanathan, A. A. Audi, and P. M. A. Sherwood, “X-ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces . 22 . Comparison between Surface Treatment of Untreated and Previously Surface-Treated Fibers,” Chemistry of materials, pp. 1100–1107, 2000.
    [51] P. Ehrburger, J. Herque, and J. Donnet, “Petroleum derived carbons. In: Deviney ML, O’Grady TM, editors,” ACS Symposium Series, vol. 21, pp. 324–334, 1976.
    [52] J. C. Kearns and R. L. Shambaugh, “Polypropylene fibers reinforced with carbon nanotubes,” Journal of Applied Polymer Science, vol. 86, pp. 2079–2084, 2002.
    [53] B. P. Grady, F. Pompeo, R. L. Shambaugh, and D. E. Resasco, “Nucleation of polypropylene crystallization by single-walled carbon nanotubes,” The Journal of Physical Chemistry B, vol. 106, pp. 5852–5858, 2002.
    [54] K. T. Lau and D. Hui, “Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures,” Carbon, vol. 40, pp. 1605–1606, 2002.
    [55] D. G. Glasgow, G. G. Tibbetts, J. J. Matuszewski, K. R. Walters, and M. L. Lake, “Surface treatment of carbon nanofibers for improved composite mechanical properties,” Int. Soc. Adv. Mater. Process Eng. Symp. Exhib. Long Beach, CA, pp. 16–20, 2004.
    [56] P. V. Lakshminarayanan, H. Toghiani, and C. U. Pittman, “Nitric acid oxidation of vapor grown carbon nanofibers,” Carbon, vol. 42, pp. 2433–2442, 2004.
    [57] M. R. Cuervo et al., “Effect of carbon nanofiber functionalization on the adsorption properties of volatile organic compounds,” Journal of Chromatography A, vol. 1188, pp. 264–273, 2008.
    [58] S. Ahn, H. Lee, B. Kim, L. Tan, and J. Baek, “Epoxy/Amine-Functionalized Short-Length Vapor-Grown Carbon Nanofiber Composites,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 46, pp. 7473–7482, 2008.
    [59] C. K. Chua and M. Pumera, “Friedel-crafts acylation on graphene,” Chemistry – An Asian Journal, vol. 7, pp. 1009–1012, 2012.
    [60] T. Tang, Z. Shi, and J. Yin, “Poly(benzimidazole) functionalized multi-walled carbon nanotubes/100% acidified poly(hydroxyaminoether) composites: Synthesis, characterization and properties,” Materials Chemistry and Physics, vol. 129, pp. 356–364, 2011.
    [61] H. J. Lee, S. W. Han, Y. Do Kwon, L. S. Tan, and J. B. Baek, “Functionalization of multi-walled carbon nanotubes with various 4-substituted benzoic acids in mild polyphosphoric acid/phosphorous pentoxide,” Carbon, vol. 46, pp. 1850–1859, 2008.
    [62] D. W. Chang, I. Y. Jeon, H. J. Choi, and J. B. Baek, “Mild and Nondestructive Chemical Modification of Carbon Nanotubes (CNTs): Direct Friedel-Crafts Acylation Reaction,” Physical and Chemical Properties of Carbon Nanotubes, 2013, pp. 295–317.
    [63] J. Seo, L. Tan, and J. Baek, “Defect / Edge-Selective Functionalization of Carbon Materials by ‘ Direct ’ Friedel – Crafts Acylation Reaction,” Advanced Materials, vol. 29, pp. 1–8, 2017.
    [64] K. Saeed, S. Park, S. Haider, and J. Baek, “In situ Polymerization of Multi-Walled Carbon Nanotube / Nylon-6 Nanocomposites and Their Electrospun Nanofibers,” Nanoscale Research Letters, vol. 4, pp. 39–46, 2009.
    [65] K. Wang, M. Gu, J. Wang, and C. Qin, “Functionalized carbon nanotube / polyacrylonitrile composite nanofibers : fabrication and properties,” Polymers for Advanced Technologies, vol. 23, pp. 262–271, 2012.
    [66] K. S. Kim, I. Y. Jeon, S. N. Ahn, Y. Do Kwon, and J. B. Baek, “Edge-functionalized graphene-like platelets as a co-curing agent and a nanoscale additive to epoxy resin,” Journal of Materials Chemistry, vol. 21, pp. 7337–7342, 2011.
    [67] L. J. Lee, Zeng C, Cao X, Han X, Shen J, and Xu G, “Polymer nanocomposite foams,” Composites Science and Technology, vol. 65, pp. 2344–2363, 2005.
    [68] M. Moniruzzaman,and K.I. Winey, “Polymer nanocomposites containing carbon nanotubes,” Macromolecules, vol. 39, pp.5194–5205, 2006. 

    [69] Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, “Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties,” Progress in Polymer Science, vol. 35 , pp. 357–401, 2010. 

    [70] P. C. Ma, N.A. Siddiqui, G. Marom, and J.K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review,” Composites Part A: Applied Science and Manufacturing, vol. 41, pp. 1345–1367, 2010. 

    [71] C. Caglayan, I. Gurkan, S. Gungor, H. Cebeci, “The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites," Composites Part A: Applied Science and Manufacturing, vol. 115, pp.187-195, 2018.
    [72] L. Madaleno, R. Pyrz, A. Crosky, L. R. Jensen, J. C. M. Rauhe, V. Dolomanova, A. M. M. V. de Barros, J. J. C. Pinto, and J. Norman, “Processing and characterization of polyurethane nanocomposite foam reinforced with montmorillonite–carbon nanotube hybrids,” Composites Part A: Applied Science and Manufacturing, vol. 44, pp. 1-7, 2013.
    [73] 李昇展,“熱硬化潛伏性環氧樹脂配方與氣相成長奈米碳纖維強化環氧樹脂複合材料於導電及結構應用之研究,” 成功大學材料科學研究所學位論文, pp. 1-147, 2013.
    [74] F. Hasanain and Z. Y. Wang, “New one-step synthesis of polyimides in salicylic acid,” Polymer, vol. 49, pp. 831–835, 2008.
    [75] T. Matsumoto, E. Ishiguro, and S. Komatsu, “Low temperature film-fabrication of hardly soluble alicyclic polyimides with high Tg by a combined chemical and thermal imidization method,” Journal of Photopolymer Science and Technology, vol. 27, pp. 167–171, 2014.
    [76] S. Estravís, J. Tirado-Mediavilla, M. Santiago-Calvo, J. L. Ruiz-Herrero, F. Villafañe, and M. A. Rodríguez-Pérez, “Rigid polyurethane foams with infused nanoclays: Relationship between cellular structure and thermal conductivity,” European Polymer Journal, vol. 80, pp. 1-15, 2016.
    [77] M. Santiago-Calvo, J. Tirado-Mediavilla, J. L. Ruiz-Herrero, M. A. Rodríguez-Pérez, and F. Villafañe, “The effects of functional nanofillers on the reaction kinetics, microstructure, thermal and mechanical properties of water blown rigid polyurethane foams,” Polymer, 150 (2018), 138-149.
    [78] M. K. Williams, E. S. Weiser, J. E. Fesmire, B. W. Grimsley, T. M. Smith, J. R. Brenner, and G. L. Nelson, “Effects of cell structure and density on the properties of high performance polyimide foams,” Polymers for advanced technologies, vol. 16, pp. 167-174, 2005.
    [79] D. Zenkert, and M. Burman, “Tension, compression and shear fatigue of a closed cell polymer foam,” Composites Science and Technology, vol. 69, pp. 785-792, 2009.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE