| 研究生: |
涂俊宏 Twu, Jiunn-Horng |
|---|---|
| 論文名稱: |
土石流地聲傳播特性之實驗研究 Experimental Study of the Propagation of Ground Vibration Produced by Debris Flows |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系碩士在職專班 Department of Hydraulic & Ocean Engineering (on the job class) |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 土石流示範觀測站 、頻率 、土石地聲 、地聲探測器 、衰減特性 、傳遞速率 |
| 外文關鍵詞: | geophones, underground sound, decay rate, propagation speed, debris flow observation station, frequency |
| 相關次數: | 點閱:86 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以地聲探測器(Geophone)量測土石碰撞時所產生之地聲,實驗所得地聲之時域訊號利用快速傅立葉轉換(FFT)及Gabor Transform轉換為頻域訊號及時間–頻率訊號,以探討土石地聲之頻率、傳遞速率及隨距離衰減特性。本研究之實驗分為兩部份,第一部份是於實驗室內量測石頭以自由落體方式撞擊水槽內之土石材料所產生之地聲。此部份之實驗主要是探討地聲探測器傾斜不同角度時所測得地聲訊號之差異。這些資訊可提供土石流觀測示範站中地聲探測器安裝及接收訊號之參考。第二部份的實驗係在農委會水土保持局所建置之土石流示範觀測站—南投縣信義鄉豐丘村豐丘野溪土石流觀測站及神木村愛玉子溪土石流觀測站,進行現場土石碰撞及滾動地聲觀測試驗,以了解實際河床中土石地聲之頻率、傳遞速率及隨距離衰減特性。實驗結果顯示石頭撞擊豐丘野溪河床或在河床上滾動所產生的地聲頻率在10到150 Hz之間,而地聲之傳遞速率約為833.3m/s~1000 m/s。不同重量石頭撞擊愛玉子溪河床所產生地聲頻率亦介於10到150 Hz之間,而地聲傳遞速率約為333.3m/s~400 m/s。
The purpose of this study is to investigate the propagation of ground vibration generated by debris flows by using geophones. The main characteristics of ground vibrations were discussed in terms of the frequencies, the propagation speed and the decay rate. The time-domain signals of ground vibrations were transformed into the frequency domain by using the Fast Fourier Transform and into the Time-Frequency domain by using the Gabor transform. The experiments were divided into two parts. The first part consisted of measuring the ground vibration caused by a free-falling rock hitting a bed of gravel in a tank. Effects of the inclination angle of the geophone on the recorded signals were tested. In the second part, the same instrumentation as in the first part was applied to measure the ground vibration produced by a free-falling rock hitting a riverbed. The field experiments were performed at the Fong-Qiu Debris Flow Observation Station and Ai-Yue-Zi River Debris Flow Observation Station, both locate at Hsin-Yi Hsiang, Nan-Tou County. The field experimental data from Fong-Qiu show that the frequency of the ground vibration is in the range of 10-150 Hz and the propagation speed is about 833.3m/s~1000 m/s. The ground vibration data from Ai-Yue-Zi River occupy the same frequency range as those from Fong-Qiu but with a much lower propagation speed is about 333.3m/s~400 m/s.
1.徐明同(1983),「地震工程」,黎明出版社,第2-13頁。
2.(蘇)斯捷潘諾夫著,孟河清譯(1986),「泥石流與泥石流體的基本特性及其量測方法」,科學技術文獻出版社重慶分社,第60-75頁。
3.吳積善、康志成、田連權(1990),「雲南蔣家溝泥石流觀測研究」,北京,科學出版社,第156-164頁。
4.台灣水土保持局及中華水土保持學會(1992),「水土保持手冊」,第2.10-2.14頁。
5.劉格非、李欣輯(1999),「地聲探測器之初步研究」,第二屆土石流研討會論文,第84-93頁。
6.劉格非、李欣輯(2000),「地聲探測器之應用」,第二屆海峽兩岸山地災害與環境保育學術研討會,pp. 161-169。
7.張守陽(2000),「土石流偵測方法之研究」,第二屆海峽兩岸山地災害與環境保育研討會,pp. 109-118。
8.黃清哲 (2003),「地聲探測器應用於土石流監測方面之研究」,行政院農業委員會水土保持局編印,SWCB-92-012-12,第42-48頁。
9.黃清哲、謝正倫、鄭友誠、尹孝元、許世盛、蔡玫諼 (2004),「土石流地聲特性之實驗研究」,中國土木水利工程學刊,16(1):53-63。
10.Duffy, J. and R. D. Mindlin(1957), “Stress-strain relations and vibrations of a granular medium,” Journal of Applied Mechanics, ASME, 24:585-601.
11.Friedlander, B. and B. Porat, B.(1989), “Detection of transient signals by the Gabor representation,” IEEE Trans. Acoust. Speech Signal Process, 37: 169-180.
12.Friedlander, B. and A. Zeira(1995), “Over-sampled Gabor representation for transient signals,” IEEE Trans. Signal Process, 43:2088-2094.
13.Fung, Y. C.(1965), Foundations of Solid Mechanics, Englewood Cliffs, N.J. Prentice-Hall.
14.Gabor, D. (1946), “Theory of communication,” J. Inst. Electr. Eng., 93: 429-459.
15.Hadley, K. C. and R. G. LaHusen(1991), “Deployment of an acoustic flow-monitor system and example of its application at Mount Pinatubo, Philippines,” EOS, Trans., American Geophysical Union, 72:67.
16.Huang, C. J., C. L. Shieh, and H. Y. Yin(2004), “Laboratory Study of the Underground Sound Generated by Debris Flows,” J. Geophys. Res., 109:1-1(F01008, doi:10.1029/2003JF000048).
17.Ishikawa, Y. and T. Ishizaki(1995), “System for measuring debris flow ground vibrations at Mt. Unzen,” Proc. 3rd PWRI-USGS Workshop on Hydrology, Water Resources and Global Climate Change, Technical Memorandum of PWRI, No. 3373, pp. 31-37.
18.Itakura, Y., N. Kamei, J. I. Takahama, and Y. Nowa(1997a), “Real time estimation of discharge of debris flow by an acoustic sensor,” 14th IMEKO World Congress, New Measurements – Challenges and Visions, Tampere, Finland, Vol. XA, pp. 127-131.
19.Itakura, Y., Y. Koga, J. I. Takahama, and Y. Nowa(1997b), “Acoustic detection sensor for debris flow,” The First Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, San Francisco, U.S.A., pp. 747-756.
20.Lavigne, F., J. C. Thouret, B. Voight, K. Young, R. LaHusen, J. Marso, H. Suwa, A. Sumaryono, D. S. Sayudi, and M. Dejean(2000), “Instrumental lahar monitoring at Merapi Volcano, Central Java, Indonesia,” Journal of Volcanology and Geothermal Research, 100:457-478.
21.Marcial S. S., A. A. Melosantos, K. C. Hadley, R. G. LaHusen, and J. N. Marso (1993), “Instrumental lahar monitoring of Mt. Pinatubo,” In: Newhall, C.G. and Punongbayan, R.S. (Eds.), Fire and Mud: Eruptions and Lahars of Mt. Pinatubo, Philippines, University of Washington Press, pp. 1015-1022.
22.Okuda, S., K. Okunishi, and H. Suwa(1980), “Observation of debris flow at Kamikamihori Valley of Mt. Yakedade,” Excursion Guide-book of the 3rd Meeting of IGU commission on field experiment in geomorphology, Disaster Prevention Research Institute, Kyoto University, Japan, pp. 127-130.
23.Suwa, H., T. Yamakoshi, and K. Sato(2000), “Relationship between debris-flow discharge and ground vibration,” The Second Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment,” Rotterdam, pp. 311-318.
24.Tungol, N.M., and M.T. Regalado (1997), “Rainfall, acoustic flow monitor records and observed lahars of the Sacobia River in 1992,” In: Newhall, C.G. and Punongbayan, R.S. (Eds.), Fire and Mud: Eruptions and Lahars of Mt. Pinatubo, Philippines, University of Washington Press, pp. 1023-1032.
25.Woods, R.D. (1968), “Screen of surface waves in soils,” J. of the Soil Mechanics and Foundations Division, ASCE, 94:951-979.