| 研究生: |
王存德 Wang, Tsun-Te |
|---|---|
| 論文名稱: |
聚(N-乙烯甲醯胺)奈米纖維之製備及纖維內分子位向性之研究 Preparation of Poly(N-vinylformamide) Nanofibers and Study of Molecular Orientation in the Fibers |
| 指導教授: |
侯聖澍
Hou, Sheng-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 聚(N-乙烯甲醯胺) 、分子位向性 、順向性纖維 、偏光鏡 |
| 外文關鍵詞: | Poly(N-vinylformamide), molecular orientation, aligned nanofiber, polarized FTIR |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中以自由基水相聚合法製備出高分子聚(N-乙烯甲醯胺),為無毒性、生物可相容性且易親水性之高分子,可被應用於生醫領域。電紡絲中PNVF/H2O系統容易使纖維互相溶解在一起,而PNVF/H2O/EtOH系統則改善溶液性質,利用OM及SEM研究溶液性質與操作參數對纖維型態與平均直徑的影響,並觀察到在電壓變因中可製備出97 ± 21 nm之纖維,在流速變因中發現隨流速增快其纖維平均直徑有一極限值存在,而工作距離變因下得知距離拉愈遠其纖維平均直徑有下降的趨勢。
此外,藉由電場誘導製備出平行排列的順向性纖維,利用polarized FTIR對等方性及順向性纖維作分析,以及程式PeakFit對圖譜中C=O與N-H之吸收峰進行波峰拆解,研究光偏振方向與纖維拉伸軸向之間夾角分別為 0o及90o時與分子位向性的關係,並且發現誘導電場促使纖維內分子鏈沿著拉伸軸向而排列,造成C-N於90o下trans-對cis-之波鋒積分面積比值為5.55;而且,於0o時幾乎所有的官能基之波峰強度皆大於90o下的值;並且在結果中得知0o時hydrogen C=O對free C=O之波峰積分面積比值為7.76,而hydrogen N-H對free N-H之波峰積分面積比值於0o及90o分別為5.16及5.28。
In the present study, we have synthesized poly(N-vinylformamide) via free radical polymerization in aqueous phase. The polymer is a non-toxic, biocompatible, and hydrophilic for applying in biomedical field. In electrospinning, the PNVF/H2O system leads to form junctions due to solvent easily. For preventing the results, the PNVF/H2O/EtOH system was prepared for improving the solution parameters. The factors that affect the fiber morphology and average diameter such as the solution parameters and the processing conditions have been investigated. In the effect of voltage, we found the fiber average diameter is 97 ± 21 nm at 15 kV. There’s a limit for diameter as increased flowrate. The average diameter of fibers reduced as the distance increasing.
Besides, the aligned nanofibers were prepared by electric field inducing, and we study the isotropic nanofibers and the aligned nanofibers through polarized FTIR. We also deconvolve the peaks of C=O and N-H by using PeakFit. We study the relationship between the molecular orientation and the angles such as 0o and 90o which are between the polarization vector of infrared radiation and the draw direction of fibers. The chains in fibers orientate along the draw direction of fibers have been investigated, and this results to the peak area ratio of C-N trans- to C-N cis- at 90o is 5.55. Moreover, the peak intensities of almost functional groups at 0o are larger than that at 90o. Finally, we discover the peak area ratio of hydrogen-bonded C=O to free C=O at 0o is 7.76, and the ratios of hydrogen-bonded N-H to free N-H at 0o and 90o are 5.16 and 5.28.
[1]Burkert, H.; Brunnmueller, F.; Beyer, K. H.; Kroener, M.; Mueller, H., US patent 1984.
[2]Stange, A.; Degen, H. J.; Auhorn, W.; Weberndoerfer, V.; Kroener, M.; Hartmann, H., US patent 1990.
[3]Pinschmidt Jr, R. K.; Lai, T. W., US patent 1990.
[4]Crema, S. C.; Kucera, C. H.; Konrad, G.; Hartmann, H., US patent 1991.
[5]Blum, R.; Hemel, R.; Mahr, N.; Lorz, R., US patent 2007.
[6]Moench, D.; Hartmann, H.; Buechner, K. H., US patent 1993.
[7]Sommese, A. G.; Sivakumar, A., US patent 1997.
[8]Chandran, R. S.; Leblanc, J. P.; Leighton, J. C.; Martino, G. T., US patent 1997.
[9]Wang, F.; Tanaka, H., J. Appl. Polym. Sci. 2000, 78, 1805.
[10]Tappi, M.; Providers, R. E.; Scholarships, T.; Releases, N.; Index, T. I. P., Tappi J. 2003, 2, 21.
[11]Marhefka, J. N.; Marascalco, P. J.; Chapman, T. M.; Russell, A. J.; Kameneva, M. V., Biomacromolecules 2006, 7, 1597.
[12]吳大誠; 杜仲良; 高珊, 奈米纖維. 五南圖書出版股份有限公司: 2004.
[13]Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S., Compos. Sci. Technol. 2003, 63, 2223.
[14]Chand, S., J. Mater. Sci. 2000, 35, 1303.
[15]Tsai, P. P.; Schreuder-Gibson, H.; Gibson, P., J. Electrostat. 2002, 54, 333.
[16]Stenoien, M. D.; Drasler, W. J.; Scott, R. J.; Jenson, M. L., US patent 5866217, 1999.
[17]Scopelianos, A. G., US patent 5522879, 1996.
[18]Bornat, A., US patent 4689186, 1987.
[19]Li, W. J.; Laurencin, C. T.; Caterson, E. J.; Tuan, R. S.; Ko, F. K., Biomed. Mater. 2002, 60, 613.
[20]Boland, E. D.; Wnek, G. E.; Simpson, D. G.; Pawlowski, K. J.; Bowlin, G. L., J. Macromol. Sci. Part A Pure Appl. Chem. 2001, 38, 1231.
[21]Martin, G. E.; Cockshott, I. D.; Fildes, F. J. T., US patent 4878908, 1989.
[22]Martin, G. E.; Cockshott, I. D.; Fildes, F. J. T., US patent 4044404, 1977.
[23]Ondarcuhu, T.; Joachim, C., Europhys. Lett. 1998, 42, 215.
[24]Feng, L.; Li, S.; Li, H.; Zhai, J.; Song, Y.; Jiang, L.; Zhu, D., Angew. Chem. Int. Ed. 2002, 114, 1269.
[25]Martin, C. R., Chem. Mater. 1996, 8, 1739.
[26]Ma, P. X.; Zhang, R., Biomed. Mater. 1999, 46, 60.
[27]Liu, G.; Ding, J.; Qiao, L.; Guo, A.; Dymov, B. P.; Gleeson, J. T.; Hashimoto, T.; Saijo, K., Chem. Eur. J. 1999, 5, 2740.
[28]Liu, G.; Qiao, L.; Guo, A., Macromolecules 1996, 29, 5508.
[29]Whitesides, G. M.; Grzybowski, B., Science 2002, 295, 2418.
[30]De Moel, K.; van Ekenstein, G.; Nijland, H.; Polushkin, E.; Ten Brinke, G.; Maki-Ontto, R.; Ikkala, O., Chem. Mater. 2001, 13, 4580.
[31]Hartgerink, J. D.; Beniash, E.; Stupp, S. I., Science 2001, 294, 1684.
[32]Yan, X.; Liu, G.; Liu, F.; Tang, B. Z.; Peng, H.; Pakhomov, A. B.; Wong, C. Y., Angew. Chem. Int. Ed. 2001, 40, 3593.
[33]Baumgarten, P. K., J. Colloid Interface Sci. 1971, 36, 71.
[34]Reneker, D. H.; Chun, I., Nanotechnology 1996, 7, 216.
[35]Fong, H.; Chun, I.; Reneker, D. H., Polymer 1999, 40, 4585.
[36]Ramakrishna, S., An introduction to electrospinning and nanofibers. World Scientific Pub Co Inc: 2005.
[37]Formhals, A., US patent 1975504, 1934.
[38]Formhals, A., US patent 2160962, 1939.
[39]Formhals, A., US patent 2187306, 1940.
[40]Formhals, A., US patent 2323025, 1943.
[41]Formhals, A., US patent 2349950, 1944.
[42]Larrondo, L.; Manley, R. S. J., J. Polym. Sci. Polym. Phys. 1981, 19, 909.
[43]Larrondo, L.; Manley, R. S. J., J. Polym. Sci. Polym. Phys. 1981, 19, 921.
[44]Larrondo, L.; Manley, R. S. J., J. Polym. Sci. Polym. Phys. 1981, 19, 933.
[45]Fong, H.; Reneker, D. H., J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 3488.
[46]Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S., J. Appl. Phys. 2000, 87, 4531.
[47]Chen, Z.; Foster, M. D.; Zhou, W.; Fong, H.; Reneker, D. H.; Resendes, R.; Manners, I., Macromolecules 2001, 34, 6156.
[48]Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S., Biomaterials 2005, 26, 2603.
[49]Taylor, G., Proc. R. Soc. London, Ser. A 1969, 313, 453.
[50]Taylor, G., Proc. R. Soc. London, Ser. A 1964, 383.
[51]Buchko, C. J.; Chen, L. C.; Shen, Y.; Martin, D. C., Polymer 1999, 40, 7397.
[52]Doshi, J.; Reneker, D. H., J. Electrostat. 1995, 35, 151.
[53]Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E., Polymer 2005, 46, 3372.
[54]Kameoka, J.; Orth, R.; Yang, Y.; Czaplewski, D.; Mathers, R.; Coates, G. W.; Craighead, H. G., Nanotechnology 2003, 14, 1124.
[55]Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B., Polymer 2002, 43, 4403.
[56]Mit-uppatham, C.; Nithitanakul, M.; Supaphol, P., Macromol. Chem. Phys. 2004, 205, 2327.
[57]Jarusuwannapoom, T.; Hongrojjanawiwat, W.; Jitjaicham, S.; Wannatong, L.; Nithitanakul, M.; Pattamaprom, C.; Koombhongse, P.; Rangkupan, R.; Supaphol, P., Eur. Polym. J. 2005, 41, 409.
[58]Demir, M. M.; Yilgor, I.; Yilgor, E.; Erman, B., Polymer 2002, 43, 3303.
[59]Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N. C., Polymer 2001, 42, 261.
[60]Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F., Macromolecules 2002, 35, 8456.
[61]Zeng, J.; Xu, X.; Chen, X.; Liang, Q.; Bian, X.; Yang, L.; Jing, X., J. Controlled Release 2003, 92, 227.
[62]Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B., Polymer 2002, 43, 4403.
[63]Lin, T.; Wang, H.; Wang, X., Nanotechnology 2004, 15, 1375.
[64]Choi, J. S.; Lee, S. W.; Jeong, L.; Bae, S. H.; Min, B. C.; Youk, J. H.; Park, W. H., Int. J. Biol. Macromol. 2004, 34, 249.
[65]Son, W. K.; Youk, J. H.; Lee, T. S.; Park, W. H., Polymer 2004, 45, 2959.
[66]Lee, K. H.; Kim, H. Y.; Khil, M. S.; Ra, Y. M.; Lee, D. R., Polymer 2003, 44, 1287.
[67]Hsu, C. M.; Shivkumar, S., Macromol. Mater. Eng. 2004, 289, 334.
[68]Wannatong, L.; Sirivat, A.; Supaphol, P., Polym. Int. 2004, 53, 1851.
[69]Riddick, J. A.; Bunger, W. B.; Sakano, T. K., Organic solvents: physical properties and methods of purification. John Wiley & Sons New York: 1970.
[70]Lee, J. S.; Choi, K. H.; Ghim, H. D.; Kim, S. S.; Chun, D. H.; Kim, H. Y.; Lyoo, W. S., J. Appl. Polym. Sci. 2004, 93, 1638.
[71]Pawlowski, K. J.; Belvin, H. L.; Raney, D. L.; Su, J.; Harrison, J. S.; Siochi, E. J., Polymer 2003, 44, 1309.
[72]Krishnappa, R. V. N.; Desai, K.; Sung, C., J. Mater. Sci. 2003, 38, 2357.
[73]Zhao, S.; Wu, X.; Wang, L.; Huang, Y., J. Appl. Polym. Sci 2004, 91, 242.
[74]Rutledge, G. C.; Li, Y.; Fridrikh, S.; Warner, S. B.; Kalayci, V. E.; Patra, P., National Textile Center Annual Report 2001, M98-D01, 1.
[75]Yuan, X.; Zhang, Y.; Dong, C.; Sheng, J., Polym. Int. 2004, 53, 1704.
[76]Ayutsede, J.; Gandhi, M.; Sukigara, S.; Micklus, M.; Chen, H. E.; Ko, F., Polymer 2005, 46.