簡易檢索 / 詳目顯示

研究生: 林鈺霖
Lin, Yu-Lin
論文名稱: 選擇性雷射燒熔AA6061多道次及多層數值分析與實驗驗證
Numerical Analysis and Experimental Verifications for the Multi-pass and the Multi-layer in the Selective Laser Melting with AA6061 Powders
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 141
中文關鍵詞: 選擇性雷射燒熔仿真粉末分布三維熱流耦合模型多層堆疊最佳化參數
外文關鍵詞: selective laser melting, random particle deposition, three-dimensional thermal-fluid coupling model, multi-layer stacking, optimized parameter
相關次數: 點閱:92下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以工業技術研究院雷射與積層製造科技中心提供之選擇性雷射燒熔(Selective Laser Melting, SLM)單道次、多道次、單層面及雙層面列印試件為基礎,分析各加工參數之列印試件於熔融區域凝固後之表面形貌。為了探討熔池行為對表面形貌的影響,將藉由商用數值模擬軟體FLOW-3D建立三維選擇性雷射燒熔之理論模型。
    本研究使用材料為工業上常用的AA6061作為實驗及模擬對象,在三維空間下建立仿真粉末分布粉床、多道次及多層面熱流耦合模擬。為了驗證模型分析準確度,將與實驗結果進行比較,得到熔池尺寸之理論值與實驗值之誤差百分比小於10%之內;且表面粗糙度理論值與實驗值之絕對誤差大都小於1 μm,說明此三維熱流耦合模型具一定精確度及可靠性。並藉由此分析模型及實驗結果的配合,進行熔池形貌、雷射間距及多層堆疊形貌間的關係研究,結果顯示粉末粒徑分布會影響最終熔池形貌;越小的雷射間距,因為重複燒熔次數較多,使得最終熔池形貌更加平整;且後續堆疊形貌會受前一層表面形貌影響。此外,也針對試件表面進行缺陷及機械性質檢測,結果顯示較高雷射功率出現裂紋缺陷;而量測之簡化楊氏模數與微硬度均隨著雷射掃描速率增加而上升。由此可說明試件之表面形貌與機械性質均隨加工參數變化,因此在最佳化參數預測上,需同時考量此兩種影響因子,以建立工藝參數圖,供未來製程上加工參數的選擇。

    This research aimed to analyze the appearances of the selective laser melting (SLM) printing results, provided by Industrial Technology Research Institute (ITRI), with various processing parameters settings. To explore the physic phenomenon of the metal powder being heated through laser, an SLM theory model was built through a commercial numerical simulation software FLOW-3D.
    We established a powder bed with a real particle size distribution, multi-pass, and multi-layer in three-dimensional simulation. To validate the accuracy and reliability of the theoretical model, AA6061, a commonly used material in the industry, was used in the simulation and experiment. The percentage errors of dimension of the molten pool between theoretical and experimental value was within 10% and the absolute errors of surface roughness between theoretical and experimental value was within 1 μm, indicating the theoretical model has decent accuracy. Finally, we discussed how different laser processing parameters affected the melting results based on the simulated model and experimental results. The results showed that surface morphology was affected by particle-size distribution. Smaller hatch distance had more remelting times, which could make the molten pool smoother. And the following stack morphology was affected by previous layer surface morphology. Furthermore, we did defects and mechanical properties inspections on the surface of the samples. The results showed that microcrack defects appeared at higher laser power and reduced Young’s modulus and microhardness both increased as the laser scanning speed increased. It can be explained that the surface morphology and mechanical properties of the samples changed with the processing parameters. Therefore, in the optimization of parameter prediction, these two influencing factors need to be considered at the same time to establish a process parameter diagram for the selection of processing parameters in the future process.

    摘要 I Extended Abstract III 誌謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 6 1-4 研究架構 7 第二章 基本理論 9 2-1 雷射理論 9 2-1-1 雷射與材料之交互性質 9 2-1-2 雷射熱傳模式 11 2-1-3 選擇性雷射燒熔之加工參數 11 2-2 選擇性雷射燒熔數值理論 13 2-2-1 控制方程式 13 2-2-2 自由表面處理 15 2-2-3 表面張力 16 2-2-4 反衝壓力 17 2-2-5 雷射體積熱源 18 2-2-6 粉床堆疊與排列 20 2-3 表面粗糙度 21 2-3-1 表面粗糙度定義 21 2-3-2 表面粗糙度量測方法 21 2-3-3 表面粗糙度表示法 22 2-4 奈米壓痕理論 24 第三章 實驗規劃 33 3-1 實驗方法 33 3-2 實驗試件簡介與特性 34 3-3 實驗設備與流程 35 3-3-1 選擇性雷射燒熔實驗 35 3-3-2 表面形貌量測 36 3-3-3 顯微組織觀察實驗 36 3-3-4 奈米壓痕試驗 38 第四章 數值模擬方法 47 4-1 數值模擬軟體簡介 47 4-2 材料性質設定 48 4-2-1 金屬流體之材料性質 49 4-2-2 相變化材料性質 49 4-3 仿真粉末分布粉床 50 4-4 多道次熱流耦合模型 51 4-4-1 理論模型設定 51 4-4-2 模型幾何與網格建立 51 4-4-3 邊界條件與初始條件 52 第五章 結果與討論 63 5-1 單/多道次選擇性雷射燒熔(SLM)實驗結果分析 63 5-1-1 單/多道次截面實驗結果分析 63 5-1-2 單/多道次俯視圖結果分析 65 5-2 單/多道次數值模型模擬結果分析 66 5-3 單/多道次數值模擬結果與實驗結果比較 68 5-4 單/雙層列印面實驗結果分析 69 5-4-1 單/雙層列印面表面粗糙度實驗結果分析 69 5-4-2 單層列印面缺陷分析 71 5-4-3 單層列印面奈米壓痕機械性質分析 74 5-5 單/多層列印面數值模擬結果與實驗比較 75 5-6 最佳化參數預測 78 第六章 結論與未來展望 131 6-1 結論 131 6-2 未來展望 132 參考文獻 134

    [1] B. Zhang, H. Liao, and C. Coddet, "Effects of processing parameters on properties of selective laser melting Mg–9% Al powder mixture," Materials & Design, vol. 34, pp. 753-758, 2012.
    [2] A. C. F. o. A. M. Technologies and A. C. F. o. A. M. T. S. F. o. Terminology, Standard terminology for additive manufacturing technologies. Astm International, 2012.
    [3] J. R. Davis, Corrosion of aluminum and aluminum alloys. Asm International, 1999.
    [4] J. Ciurana, L. Hernandez, and J. Delgado, "Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material," The International Journal of Advanced Manufacturing Technology, vol. 68, no. 5-8, pp. 1103-1110, 2013.
    [5] H. Gong, K. Rafi, T. Starr, and B. Stucker, "The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting," in 24th annual international solid freeform fabrication symposium—an additive manufacturing conference, Austin, TX, 2013, pp. 424-439.
    [6] H. Gu, H. Gong, D. Pal, K. Rafi, T. Starr, and B. Stucker, "Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel," in 2013 Solid Freeform Fabrication Symposium, 2013, vol. 474.
    [7] F. Klocke and C. Wagner, "Coalescence behaviour of two metallic particles as base mechanism of selective laser sintering," CIRP Annals, vol. 52, no. 1, pp. 177-180, 2003.
    [8] R. Li, J. Liu, Y. Shi, L. Wang, and W. Jiang, "Balling behavior of stainless steel and nickel powder during selective laser melting process," The International Journal of Advanced Manufacturing Technology, vol. 59, no. 9, pp. 1025-1035, 2012.
    [9] K. Prashanth, S. Scudino, T. Maity, J. Das, and J. Eckert, "Is the energy density a reliable parameter for materials synthesis by selective laser melting?," Materials Research Letters, vol. 5, no. 6, pp. 386-390, 2017.
    [10] A. Simchi, "Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features," Materials Science and Engineering: A, vol. 428, no. 1-2, pp. 148-158, 2006.
    [11] B. Cheng, S. Shrestha, and K. Chou, "Stress and deformation evaluations of scanning strategy effect in selective laser melting," Additive Manufacturing, vol. 12, pp. 240-251, 2016.
    [12] Y. Lee and W. Zhang, "Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing," in International solid free form fabrication symposium, Austin, 2015, pp. 1154-1165.
    [13] Y. Tian, L. Yang, D. Zhao, Y. Huang, and J. Pan, "Numerical analysis of powder bed generation and single track forming for selective laser melting of SS316L stainless steel," Journal of Manufacturing Processes, vol. 58, pp. 964-974, 2020.
    [14] J. Yin, H. Zhu, L. Ke, P. Hu, C. He, H. Zhang, and X. Zeng, "A finite element model of thermal evolution in laser micro sintering," The International Journal of Advanced Manufacturing Technology, vol. 83, no. 9-12, pp. 1847-1859, 2016.
    [15] A. Hussein, L. Hao, C. Yan, and R. Everson, "Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting," Materials & Design (1980-2015), vol. 52, pp. 638-647, 2013.
    [16] Y. Li and D. Gu, "Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder," Materials & Design, vol. 63, pp. 856-867, 2014.
    [17] J. Romano, L. Ladani, and M. Sadowski, "Thermal modeling of laser based additive manufacturing processes within common materials," Procedia Manufacturing, vol. 1, pp. 238-250, 2015.
    [18] Y. Lee and D. Farson, "Surface tension-powered build dimension control in laser additive manufacturing process," The International Journal of Advanced Manufacturing Technology, vol. 85, no. 5, pp. 1035-1044, 2016.
    [19] S. A. Khairallah and A. Anderson, "Mesoscopic simulation model of selective laser melting of stainless steel powder," Journal of Materials Processing Technology, vol. 214, no. 11, pp. 2627-2636, 2014.
    [20] M. Bayat, S. Mohanty, and J. H. Hattel, "Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF," International Journal of Heat and Mass Transfer, vol. 139, pp. 95-114, 2019.
    [21] C. Chen, G. Lian, J. Jiang, and Q. Wang, "Simplification and experimental investigation of geometrical surface smoothness model for multi-track laser cladding processes," Journal of Manufacturing Processes, vol. 36, pp. 621-628, 2018.
    [22] X. Jingang, C. Yong, C. Hui, and Y. Bing, "Influence of Process Parameters on Forming Defects of H13 Steel Processed by Selective Laser Melting," Laser & Optoelectronics Progress, vol. 55, no. 4, p. 041405, 2018.
    [23] K. Peng, R. Duan, Z. Liu, X. Lv, Q. Li, F. Zhao, B. Wei, B. Nong, and S. Wei, "Cracking Behavior of René 104 Nickel-Based Superalloy Prepared by Selective Laser Melting Using Different Scanning Strategies," Materials, vol. 13, no. 9, p. 2149, 2020.
    [24] W. M. Steen and J. Mazumder, Laser material processing. springer science & business media, 2010.
    [25] C. Walsh, "Laser welding–literature review," Materials Science and Metallurgy Department, University of Cambridge, England, vol. 1, 2002.
    [26] C. Li, C. Fu, Y. Guo, and F. Fang, "A multiscale modeling approach for fast prediction of part distortion in selective laser melting," Journal of Materials Processing Technology, vol. 229, pp. 703-712, 2016.
    [27] C. W. Hirt and B. D. Nichols, "Volume of fluid (VOF) method for the dynamics of free boundaries," Journal of computational physics, vol. 39, no. 1, pp. 201-225, 1981.
    [28] J. U. Brackbill, D. B. Kothe, and C. Zemach, "A continuum method for modeling surface tension," Journal of computational physics, vol. 100, no. 2, pp. 335-354, 1992.
    [29] J. Cho and S.-J. Na, "Three-dimensional analysis of molten pool in GMA-laser hybrid welding," Welding Journal, vol. 88, no. 2, pp. 35-43, 2009.
    [30] V. Semak and A. Matsunawa, "The role of recoil pressure in energy balance during laser materials processing," Journal of physics D: Applied physics, vol. 30, no. 18, p. 2541, 1997.
    [31] X. Chen and H.-X. Wang, "A calculation model for the evaporation recoil pressure in laser material processing," Journal of Physics D: Applied Physics, vol. 34, no. 17, p. 2637, 2001.
    [32] J.-H. Cho and S.-J. Na, "Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole," Journal of Physics D: Applied Physics, vol. 39, no. 24, p. 5372, 2006.
    [33] Z. Zhang, Y. Huang, A. R. Kasinathan, S. I. Shahabad, U. Ali, Y. Mahmoodkhani, and E. Toyserkani, "3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity," Optics & Laser Technology, vol. 109, pp. 297-312, 2019.
    [34] M. Rombouts, L. Froyen, A. Gusarov, E. H. Bentefour, and C. Glorieux, "Photopyroelectric measurement of thermal conductivity of metallic powders," Journal of Applied physics, vol. 97, no. 2, p. 024905, 2005.
    [35] X. Wang, T. Laoui, J. Bonse, J.-P. Kruth, B. Lauwers, and L. Froyen, "Direct selective laser sintering of hard metal powders: experimental study and simulation," The International Journal of Advanced Manufacturing Technology, vol. 19, no. 5, pp. 351-357, 2002.
    [36] A. Streek, P. Regenfuss, and H. Exner, "Fundamentals of energy conversion and dissipation in powder layers during laser micro sintering," Physics Procedia, vol. 41, pp. 858-869, 2013.
    [37] 工業技術研究院雷射與積層製造科技中心, 2018.
    [38] R. Remsburg, Thermal design of electronic equipment. CRC press, 2017.
    [39] H. Nakashima, "Discrete Element Method (DEM) and its possible application," in SICE 2004 Annual Conference, 2004, vol. 2: IEEE, pp. 1104-1107.
    [40] M. Raessi, J. Mostaghimi, and M. Bussmann, "Advecting normal vectors: A new method for calculating interface normals and curvatures when modeling two-phase flows," Journal of Computational Physics, vol. 226, no. 1, pp. 774-797, 2007.
    [41] T. Anthony and H. Cline, "Surface rippling induced by surface‐tension gradients during laser surface melting and alloying," Journal of Applied Physics, vol. 48, no. 9, pp. 3888-3894, 1977.
    [42] W.-R. Chang, M. Hirvonen, and R. Grönqvist, "The effects of cut-off length on surface roughness parameters and their correlation with transition friction," Safety science, vol. 42, no. 8, pp. 755-769, 2004.
    [43] E. Gadelmawla, M. M. Koura, T. M. Maksoud, I. M. Elewa, and H. Soliman, "Roughness parameters," Journal of materials processing Technology, vol. 123, no. 1, pp. 133-145, 2002.
    [44] M. Sedlaček, P. Gregorčič, and B. Podgornik, "Use of the roughness parameters S sk and S ku to control friction—A method for designing surface texturing," Tribology Transactions, vol. 60, no. 2, pp. 260-266, 2017.
    [45] 魏伯任, "奈米壓痕實驗應用於塊材, 覆膜材料機械性質以及硬脆材料黏彈性質量測—理論分析與實驗印證," 成功大學機械工程學系學位論文, pp. 1-124, 2005.
    [46] A. Ladewig, G. Schlick, M. Fisser, V. Schulze, and U. Glatzel, "Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process," Additive Manufacturing, vol. 10, pp. 1-9, 2016.
    [47] A. M. Ltd. "Aluminium Alloy - Commercial Alloy - 6061 - T6 Extrusions." https://www.aalco.co.uk/datasheets/Aluminium-Alloy-6061-T6-Extrusions_145.ashx (accessed 2020).
    [48] I. Flow Science, Santa Fe, NM, USA. FLOW-3D® Version 12.0 (2019).
    [49] T. C. Hales, "The sphere packing problem," Journal of Computational and Applied Mathematics, vol. 44, no. 1, pp. 41-76, 1992.
    [50] K. C. Mills, Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing, 2002.
    [51] V. Griffiths, J. P. Scanlan, M. H. Eres, A. Martinez-Sykora, and P. Chinchapatnam, "Cost-driven build orientation and bin packing of parts in Selective Laser Melting (SLM)," European Journal of Operational Research, vol. 273, no. 1, pp. 334-352, 2019.
    [52] F. Richter, "Mechanical properties of solid bulk materials and thin films," International Research Training Group, 2010.
    [53] H. L. Dorothy and P. Longère, "Unified modelling of adiabatic shear banding and subsequent micro-voiding driven dynamic failure of viscoplastic solids," International Journal of Impact Engineering, vol. 132, p. 103322, 2019.
    [54] A. H. Maamoun, Y. F. Xue, M. A. Elbestawi, and S. C. Veldhuis, "The effect of selective laser melting process parameters on the microstructure and mechanical properties of Al6061 and AlSi10Mg alloys," Materials, vol. 12, no. 1, p. 12, 2019.
    [55] c. Wikipedia, "STL (file format)," in Wikipedia, The Free Encyclopedia., ed.

    下載圖示 校內:立即公開
    校外:2024-07-31公開
    QR CODE