| 研究生: |
蔡耀宗 Tsai, Yao-Tsung |
|---|---|
| 論文名稱: |
篩選及分析galectin-1 aptamer以做為口腔癌診斷與治療之應用 Selection and Characterization of Galectin-1 Aptamer for Oral Cancer Therapeutic Diagnostic Application |
| 指導教授: |
陳玉玲
Chen, Yuh-Ling 洪澤民 Hong, Tse-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 核酸適體 、半乳糖凝集素-1 、口腔癌 |
| 外文關鍵詞: | aptamer, galectin-1, SELEX, oral cancer |
| 相關次數: | 點閱:122 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Aptamer是一種短片段單股的DNA、RNA或胜肽分子,利用其形成二級結構的特性,可以專一性的與蛋白質的特定位置做鍵結,而對蛋白質的功能造成影響,並且可以透過專一性aptamer來研究蛋白質的功能、交互作用,具有類似抗體的功能。Galectin-1是一種具有carbohydrate recognition domains(Earl et al.)可與細胞表面之β-galactosides結合,屬於lectin家族之一。galectin-1對於生長調節、腫瘤形成、免疫、以及細胞貼附、移動扮演一個重要的角色。本實驗室先前的研究即指出,galectin-1能增進口腔癌細胞的增生、貼附與移動。動物實驗方面也發現到,galectin-1基因剔除小鼠可延緩口腔癌前病變及口腔癌的形成。因此本研究希望篩選出專一性的galectin-1 DNA aptamers,以改善口腔癌診斷與治療。目前我們已經利用重組galectin-1從隨機的DNA aptamer序列庫中去篩選特定的aptamer,並經由PCR放大後重複篩選。經由反覆的篩選得到了一些有潛力的aptamer,透過多重序列比對的方式去分析這些經過篩選的核酸適體。挑選出有興趣的產物之後,進一步利用了即時定量PCR (real-time PCR)確認aptamer對於galectin-1蛋白親和力。根據結合能力測試,選定了具有高親和力的AP-27、AP-39、AP-74進行PCR及化學合成。針對galectin-1本身及其對於細胞的生理功能,我們測試了血球凝集實驗,初步發現三個候選aptamer並沒有明顯的抑制galectin-1的血球凝集活性。而在aptamer是否影響galectin-1對於口腔癌細胞OC2的貼附實驗,我們驗證了AP-27與AP-39能有效的抑制galectin-1所促進的OC2細胞貼附,而在OC2細胞移行實驗中,我們亦發現aptamer能抑制OC2細胞移行。綜合以上所述,本研究利用重組蛋白SELEX篩選出galectin-1專一性aptamer,並發現能有效抑制OC2細胞的貼附及移行。
Aptamer is a short DNA or RNA fragment that can form complex secondary structure to confer high degree of specificity for its target molecule. According to this property, aptamer can bind to the specific site of proteins and affect the function of proteins. Galectin-1 is one of the lectin families with carbohydrate recognition domains (CRD) which can bind to β-galactosides. In previous studies, galectin-1 play an important role in growth regulation, tumorigenesis, cell adhesion, and migration. Our group had shown that galectin-1 can promote proliferation, adhesion, and migration in oral cancer cell. On the other hand, galectin-1 knockout can delay the development of oral leukoplakia and formation of oral cancer. Thereby, we want to select galectin-1 specific aptamers to improve diagnosis and therapy of oral cancer. We used galectin-1 to select aptamer from random library and amplified the aptamer product by PCR previously. Then, we analysis the aptamer candidates by multiple alignment, and amplify the aptamer candidates by PCR. After getting the aptamer product, we analyze the binding affinity by real-time PCR. According to qPCR binding assay, AP-27, AP-39, and AP-74 may be potential aptamers that targeting galectin-1. We confirm the function of those aptamers by hemoagglutination assay, adhesion and migration assay at oral cancer cell lines. In hemoagglutination assay, we found that AP-39 and AP-74 inhibit hemoagglutination slightly. In cell functional assay, AP-27, and AP-39 dose-dependently block galectin-1 promoted OC2 cells adhesion. On other hand, we also found these three aptamer candidates inhibit galectin-1 promoted OC2 cell migration.
Bala, J., Bhaskar, A., Varshney, A., Singh, A.K., Dey, S., and Yadava, P. In vitro selected RNA aptamer recognizing glutathione induces ROS mediated apoptosis in the human breast cancer cell line MCF 7. RNA biology 8.
Biron, V.A., Iglesias, M.M., Troncoso, M.F., Besio-Moreno, M., Patrignani, Z.J., Pignataro, O.P., and Wolfenstein-Todel, C. (2006). Galectin-1: biphasic growth regulation of Leydig tumor cells. Glycobiology 16, 810-821.
Bouchard, P.R., Hutabarat, R.M., and Thompson, K.M. (2010). Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol 50, 237-257.
Chang, Y.C., Kao, W.C., Wang, W.Y., Wang, W.Y., Yang, R.B., and Peck, K. (2009a). Identification and characterization of oligonucleotides that inhibit Toll-like receptor 2-associated immune responses. Faseb J 23, 3078-3088.
Chang, Y.C., Kao, W.C., Wang, W.Y., Yang, R.B., and Peck, K. (2009b). Identification and characterization of oligonucleotides that inhibit Toll-like receptor 2-associated immune responses. Faseb J 23, 3078-3088.
Chiang, W.F., Liu, S.Y., Fang, L.Y., Lin, C.N., Wu, M.H., Chen, Y.C., Chen, Y.L., and Jin, Y.T. (2008). Overexpression of galectin-1 at the tumor invasion front is associated with poor prognosis in early-stage oral squamous cell carcinoma. Oral oncology 44, 325-334.
Dassie, J.P., Liu, X.Y., Thomas, G.S., Whitaker, R.M., Thiel, K.W., Stockdale, K.R., Meyerholz, D.K., McCaffrey, A.P., McNamara, J.O., 2nd, and Giangrande, P.H. (2009). Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nature biotechnology 27, 839-849.
Earl, L.A., Bi, S., and Baum, L.G. Galectin multimerization and lattice formation are regulated by linker region structure. Glycobiology 21, 6-12.
Ellerhorst, J., Troncoso, P., Xu, X.C., Lee, J., and Lotan, R. (1999). Galectin-1 and galectin-3 expression in human prostate tissue and prostate cancer. Urological research 27, 362-367.
Ellington, A.D., and Szostak, J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822.
Feigon, J., Dieckmann, T., and Smith, F.W. (1996). Aptamer structures from A to zeta. Chem Biol 3, 611-617.
Ferreira, C.S., Matthews, C.S., and Missailidis, S. (2006). DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol 27, 289-301.
Hittelet, A., Legendre, H., Nagy, N., Bronckart, Y., Pector, J.C., Salmon, I., Yeaton, P., Gabius, H.J., Kiss, R., and Camby, I. (2003). Upregulation of galectins-1 and -3 in human colon cancer and their role in regulating cell migration. Int J Cancer 103, 370-379.
Hsieh, S.H., Ying, N.W., Wu, M.H., Chiang, W.F., Hsu, C.L., Wong, T.Y., Jin, Y.T., Hong, T.M., and Chen, Y.L. (2008). Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 27, 3746-3753.
Jayasena, S.D. (1999). Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45, 1628-1650.
Jung, E.J., Moon, H.G., Cho, B.I., Jeong, C.Y., Joo, Y.T., Lee, Y.J., Hong, S.C., Choi, S.K., Ha, W.S., Kim, J.W., et al. (2007). Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer. Int J Cancer 120, 2331-2338.
Katoh, Y., and Katoh, M. (2009). FGFR2-related pathogenesis and FGFR2-targeted therapeutics (Review). Int J Mol Med 23, 307-311.
Kunii, T., Ogura, S., Mie, M., and Kobatake, E. Selection of DNA aptamers recognizing small cell lung cancer using living cell-SELEX. The Analyst 136, 1310-1312.
Lorsch, J.R., and Szostak, J.W. (1994). In vitro selection of RNA aptamers specific for cyanocobalamin. Biochemistry 33, 973-982.
Lotan, R., Belloni, P.N., Tressler, R.J., Lotan, D., Xu, X.C., and Nicolson, G.L. (1994). Expression of galectins on microvessel endothelial cells and their involvement in tumour cell adhesion. Glycoconj J 11, 462-468.
Marsich, E., Mozetic, P., Ortolani, F., Contin, M., Marchini, M., Vetere, A., Pacor, S., Semeraro, S., Vittur, F., and Paoletti, S. (2008). Galectin-1 in cartilage: expression, influence on chondrocyte growth and interaction with ECM components. Matrix Biol 27, 513-525.
McCauley, T.G., Kurz, J.C., Merlino, P.G., Lewis, S.D., Gilbert, M., Epstein, D.M., and Marsh, H.N. (2006). Pharmacologic and pharmacokinetic assessment of anti-TGFbeta2 aptamers in rabbit plasma and aqueous humor. Pharm Res 23, 303-311.
Mi, J., Liu, Y., Rabbani, Z.N., Yang, Z., Urban, J.H., Sullenger, B.A., and Clary, B.M. In vivo selection of tumor-targeting RNA motifs. Nature chemical biology 6, 22-24.
Ozaki, H., Nishihira, A., Wakabayashi, M., Kuwahara, M., and Sawai, H. (2006). Biomolecular sensor based on fluorescence-labeled aptamer. Bioorg Med Chem Lett 16, 4381-4384.
Padmanabhan, K., Padmanabhan, K.P., Ferrara, J.D., Sadler, J.E., and Tulinsky, A. (1993). The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J Biol Chem 268, 17651-17654.
Perillo, N.L., Pace, K.E., Seilhamer, J.J., and Baum, L.G. (1995). Apoptosis of T cells mediated by galectin-1. Nature 378, 736-739.
Rabinovich, G.A. (2005). Galectin-1 as a potential cancer target. Br J Cancer 92, 1188-1192.
Tavitian, B. (2003). In vivo imaging with oligonucleotides for diagnosis and drug development. Gut 52 Suppl 4, iv40-47.
Thiel, K.W., and Giangrande, P.H. (2010). Intracellular delivery of RNA-based therapeutics using aptamers. Ther Deliv 1, 849-861.
Weiss, S., Proske, D., Neumann, M., Groschup, M.H., Kretzschmar, H.A., Famulok, M., and Winnacker, E.L. (1997). RNA aptamers specifically interact with the prion protein PrP. J Virol 71, 8790-8797.
Wu, M.H., Hong, T.M., Cheng, H.W., Pan, S.H., Liang, Y.R., Hong, H.C., Chiang, W.F., Wong, T.Y., Shieh, D.B., Shiau, A.L., et al. (2009). Galectin-1-mediated tumor invasion and metastasis, up-regulated matrix metalloproteinase expression, and reorganized actin cytoskeletons. Mol Cancer Res 7, 311-318.
Yu, M.K., Kim, D., Lee, I.H., So, J.S., Jeong, Y.Y., and Jon, S. (2011). Image-Guided Prostate Cancer Therapy Using Aptamer-Functionalized Thermally Cross-Linked Superparamagnetic Iron Oxide Nanoparticles. Small