| 研究生: |
沈彥安 Shen, Yen-An |
|---|---|
| 論文名稱: |
木質材料吸濕技術:可動皮層的研究與發展 Hygroscopic Technology in Wood Materials : Research and Development of Dynamic Skins |
| 指導教授: |
鄭泰昇
Jeng, Tay-Sheng 沈揚庭 Shen, Yang-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 仿生建築 、智能材料 、自適應架構 、木質皮層材 、4D列印 |
| 外文關鍵詞: | Biomimetic Architecture, Smart Materials, Adaptive Structures, Wooden Skin, 4D Printing |
| 相關次數: | 點閱:77 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究從材料研究著手,重新思考人、建築與環境之間的關係。在自然界中,我們可以觀察到各種生物在適應環境時所演化出的多樣特徵,這些特殊適應環境的方式提供我們作適應性仿生建築的想像。
本文以木質材料作為可動皮層的媒介,透過木質材料在吸收水分後會改變其形狀大小的特性,使木質皮層在不同環境條件下會自然地捲曲變形。不同的是,本文將木質材料彼此複合,原木皮層是反應層,4D列印木質PLA是抑制層,利用木質PLA在列印時調控的參數做為控制吸濕可動皮層捲曲的方式。
研究方法分為三個主要階段。首先,通過反覆的材料試驗,尋找適合用作吸濕制動器反應皮層的木質單元。接下來,通過幾何排列和形態演化來研究木質皮層的物理動態、組構關係和空間性質,以創建可發展的空間原型,並實作之觀察記錄其效果。最後,整合成果並討論木質皮層的組構以及與環境互動的特性。這讓可持續性建築和其他領域的創新設計提供新的可能性,不僅可以節省能源,還可以提高建築的環境適應能力。
The article is focused on material research, reimagining the relationship between humans, architecture, and the environment. In nature, various organisms exhibit diverse features evolved for adapting to their environments. These unique adaptive strategies serve as inspiration for envisioning adaptive biomimetic architecture.
Using wood as a medium for the kinetic skin, utilizing its property of changing shape and size upon absorbing moisture, enabling the wooden skin to naturally curl and deform under different environmental conditions. The wooden materials are compounded with each other, with the original wood veneer serving as the responsive layer, and 4D printed wooden PLA as the inhibitory layer. The parameters controlled during the printing are utilized to control the curling of the hygroscopic kinetic skin.
Firstly, suitable wood materials are identified through material testing to serve as the responsive layer for the hygroscopic actuator. Second, the physical dynamics, structural relationships, and spatial properties of the wooden skin are studied through geometric arrangements and morphological evolution. This involves creating a developable spatial prototype, implementing it, and observing its effects. Finally, the results are integrated, and the structure of the wooden skin and its interactions with the environment are discussed. This opens up new possibilities for innovative designs in sustainable architecture and other fields, offering not only energy savings but also enhancing the adaptability of buildings to their surroundings.
Abdullah, Y. S., & Al-Alwan, H. A. (2019). Smart material systems and adaptiveness in architecture. Ain Shams Engineering Journal, 10(3), 623-638.
Bingelis, T. (1986). Laminating and Bending Wood. EAA Sport Aviation, 35(6), 28-29.
Chen, E., Lu, G., Barnik, L., & Correa, D. (2022). Fast and Reversible Bistable Hygroscopic Actuators for Architectural Applications based on Plant Movement Strategies. In Proceedings of the International Conference on Education and Research in Computer Aided Architectural Design in Europe (Vol. 1, pp. 261-270).
Cheng, T., Tahouni, Y., Wood, D., Stolz, B., Mülhaupt, R., & Menges, A. (2020, November). Multifunctional mesostructures: design and material programming for 4D-printing. In Proceedings of the 5th Annual ACM Symposium on Computational Fabrication (pp. 1-10).
Correa, D., Papadopoulou, A., Guberan, C., Jhaveri, N., Reichert, S., Menges, A., & Tibbits, S. (2015). 3D-printed wood: programming hygroscopic material transformations. 3D Printing and Additive Manufacturing, 2(3), 106-116.
El-Dabaa, R., & Abdelmohsen, S. (2023). Hygroscopy and adaptive architectural façades: an overview. Wood Science and Technology, 1-26.
Holstov, A., Bridgens, B., & Farmer, G. (2015). Hygromorphic materials for sustainable responsive architecture. Construction and Building Materials, 98, 570-582.
Holstov, A., Farmer, G., & Bridgens, B. (2017). Sustainable materialisation of responsive architecture. Sustainability, 9(3), 435.
Krapež Tomec, D., Straže, A., Haider, A., & Kariž, M. (2021). Hygromorphic response dynamics of 3D-printed wood-PLA composite bilayer actuators. Polymers, 13(19), 3209.
Kuru, A., Oldfield, P., Bonser, S., & Fiorito, F. (2022). Biomimetic adaptive building skins: Design and performance. In Rethinking Building Skins (pp. 181-200). Woodhead Publishing.
Le Duigou, A., Chabaud, G., Scarpa, F., & Castro, M. (2019). Bioinspired electro‐thermo‐hygro reversible shape‐changing materials by 4D printing. Advanced Functional Materials, 29(40), 1903280.
Loonen, R. C., Trčka, M., Cóstola, D., & Hensen, J. L. (2013). Climate adaptive building shells: State-of-the-art and future challenges. Renewable and sustainable energy reviews, 25, 483-493.
Naboni, R., & Marino, S. D. (2021). Wedged kerfing. Design and fabrication experiments in programmed wood bending. Proceedings of the SIGraDi.
Nan, M., Chen, Z., Liu, L., & Baharlou, E. Hygrosensitive Kinetic Facade.
Reichert, S., Menges, A., & Correa, D. (2015). Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Computer-Aided Design, 60, 50-69.
Vailati, C., Bachtiar, E., Hass, P., Burgert, I., & Rüggeberg, M. (2018). An autonomous shading system based on coupled wood bilayer elements. Energy and Buildings, 158, 1013-1022.
杜善義, 冷勁松, 王墊富. (2001). 智能材料系統和結構. 科学出版社
楊親民. (1999). 智能材料的研究與開發. 功能材料, 30(6), 575-581
林永盛. (2015). 智慧材料在互動建築的應用. (碩士),成功大學
邱婉婷. (2012). 仿生建築之設計思考研究. (碩士),雲林科技大學
黃瑋晨. (2014). 特定條件下產生的自我適應性建築. (碩士),陽明交通大學
顏宇晨. (2022). 受洋紫荊果莢螺旋型態啟發之 4D 列印形狀變換.(碩士),台灣大學