| 研究生: |
莊淑如 Jhuang, Shu-Ru |
|---|---|
| 論文名稱: |
改造具立體選擇性之酯水解酵素活化中心結構以改變其受質專一性 Engineer the Active Site Structure of a Stereoselective Esterase to Alter Its Substrate Specificity |
| 指導教授: |
蕭世裕
Shawa, Shyh-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 降血壓藥物 、酵素光學切割 、酯水解酵素 、酵素定點突變 、蛋白質工程 |
| 外文關鍵詞: | Captopril, DAT, Enzymatic resolution, Protein engineering, Esterase, Site-directed mutagenesis |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Esterase酯水解酵素可對乙醯硫代異丁酸甲酯(methyl DL-β-acetylthioisobutyrate簡稱DL-MATI)進行酵素光學切割產生乙醯硫代異丁酸(D-β-acetylthioisobutyric acid簡稱DAT)。而DAT為合成降血壓藥物Captopril的前趨物。
藉由檢視X-ray繞射定出EST結構與受質之間作用的位置,並由EST和不同受質間作用的相對活性,得知EST對於受質主要有三個辨識位,ester moiety、C-2 site及C-3 site,目前我們分別挑出EST作用於前二辨識位的胺基酸:Phe166、Trp184及Phe203、Ile229做定點突變,且對特定受質作檢測,並經由酵素動力學的計算來觀察突變後酵素對受質的接受度,及突變後對酵素立體選擇水解功能的影響。
此研究論文當中,我們成功的藉由定點突變的方法,取得一酯水解酵素突變株Phe166Ala,可對原本wild-type EST不易水解的受質DL-HEATI進行水解切割,由原本wild-type EST對DL-HEATI的酵素動力學Kcat / Km = 0.8 x 103 mM-1min-1提升至Kcat / Km = 15.3 x 103 mM-1min-1,且仍具有良好的立體選擇性,而此受質為一水溶性較佳的酯類受質,於工業上用途,搭配Phe166Ala的催化作用,便可提升單位時間、反應體積內Captopril的前趨物 - DAT之合成產率。
Esterase is an enzyme that perform stereoselective hydrolysis of methyl DL-β-acetylthioisobutyrate (DL-MATI) to yield D-β-acetylthioisobutyric acid (DAT). The catalytic product "DAT" is a precursor of an antihypertensive drug--Captopril.
To resolve the crystal structure of EST-substrate complex via X-ray diffraction method and to measure the relative activity of EST with a series of linear ester substrates, we have identified that EST has three potential recognition sites for substrate: ester moiety、C-2 site and C-3 site. Therefore, we selected four target amino acids in EST active site to perform site directed mutagenesis (Phe166, Trp184 specific for ester moiety and Phe203, Ile229 specific for C-2 site), and investigated the substrate specificity and hydrolytic activity of these four mutants.
In this study, we found an EST mutant (Phe166Ala) has better activity to hydrolyze DL-HEATI than the wild-type EST does. The kinetics parameters of wild-type EST to hydrolyze DL-HEATI was Kcat / Km = 0.8 x 103 mM-1min-1, while the EST mutant (Phe166Ala) was improved to Kcat / Km = 15.3 x 103 mM-1min-1 . Besides, DL-HEATI was 5.3 fold more soluble in water than DL-MATI and DL-HEATI is a better choice than DL-MATI for industrial production of DAT by the enzymatic resolution method. This result suggested that EST mutant ( Phe166Ala ) is a mutant which can kinetically resolve DL-HEATI to yield DAT.
1. Skiles J. W., S.J.T., Williams B. E., Menard P R., Barton J. N., Loev B., Jones H., Neiss E. S., Schwab A., Mann W. S., Khandwala A., Wolf P.S. and Weinryb I. (1986). Angiotensin-converting enzyme inhibitors: new orally active 1,4-thiazepine-2,5-diones, 1,4-thiazine-2,5-diones, and 1,4-benzothiazepine-2,5-diones possessing antihypertensive activity. Journal of Medicinal Chemistry 29, 784-796.
2. John T. Suh, J.W.S., Bruce E. Williams, Raymond D. Youssefyeh, Howard Jones, Bernard Loev, Edward S. Neiss, Alfred Schwab, William S. Mann. (1985). Angiotensin-converting enzyme inhibitors. New orally active antihypertensive (mercaptoalkanoyl)- and [(acylthio)alkanoyl]glycine derivatives. Journal of Medicinal Chemistry 28, 57-66.
3. Akihiro Sakimae, E.O., Hiroko Toyama, Naoto Ohsuga, Ryozo Numazawa, Itsumi Muraoka, Eiichi Hamada, Hisao Ohnishi. (1993). Process Conditions for Production of D-b-Acetylthioisobutyric Acid from Methyl DL-b-Acetylthioisobutyrate with the Cells of Pseudomonas putida MR-2068. Bioscience, Biotechnology, and Biochemistry 57, 782-786.
4. RR Chirumamilla, R.M., P Nigam. (2001). Captopril and its synthesis from chiral intermediates. Journal of Chemical Technology and Biotechnology 76, 123-127.
5. Akihiro Sakimae, A.H., Etsuko Kobayashi, Naoto Ohsuga, Ryozo Numazawa, Ichiro Watanabe, Hisao Ohnishi. (1992). Screening of Microorganisms Producing D-b-Acetylthioisobutyric Acid from Methyl DL-b-Acetylthioisobutyrate. Bioscience, Biotechnology, and Biochemistry. 56, 1252-1256.
6. Eiji Ozaki, A.S., Ryozo Numazawa. (1994). Cloning and Expression of Pseudomonas putida Esterase Gene in Escherichia coli and Its Use in Enzymatic Production of D-b-Acetylthioisobutyric Acid. Bioscience, Biotechnology, and Biochemistry.58, 1745-1746.
7. A. Schmid, J.S.D., B. Hauer, A. Kiener, M. Wubbolts, B. Witholt. (2001). Industrial biocatalysis today and tomorrow. Nature 409, 258-268.
8. Hans E. Schoemaker, D.M., Marcel G. Wuboolts. (2003). Dispelling the Myths-Biocatalysis in Industrial Synthesis. Science 299, 1694-1697.
9. David J. Pollard, J.M.W. (2006). Biocatalysis for pharmaceutical intermediates: the future is now. TRENDS in Biotechnology 25, 66-73.
10. Shyh-Yu Shawa, Y.-J.C., Jung-Jung Oua, Lewis Hob (2006). Enzymatic resolution of methyl DL-b-acetylthioisobutyrate and DL-b-acetylthioisobutyramide using a stereoselective esterase from Pseudomonas putida IFO12996. Journal of Molecular Catalysis B: Enzymatic 38, 163-170.
11. 陳裕仁 (2007). 偽單胞酯水解酵素之特性及固定化研究. 國立成功大學化學系研究所,博士論文.
12. Shyh-Yu Shawa, Y.-J.C., Jung-Jung Oua, Lewis Hob (2006). Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles. Enzyme and Microbial Technology 39, 1089-1095.
13. Shyh-Yu Shaw, Y.-J.C., Jung-Jung Ou, Lewis Ho (2007). Steroselective Hydrolysis of DL-beta-acetylthioisobutyramide Catalyzed by Genetically Engineered E. coli Immobilized on Celite 580 in a Packed Bed Bioreactor. Journal of the Chinese Chemical Society 54, 1609-1613.
14. Fatemeh Elmi, H.-T.L., Jen-Yeng Huang, Yin-Cheng Hsieh, Yu-Ling Wang, Yu-Jen Chen, Shyh-Yu Shaw, Chun-Jung Chen. (2005). Stereoselective Esterase from Pseudomonas putida IFO12996 Reveals a/b Hydrolase Folds for D-b-Acetylthioisobutyric Acid Synthesis. Journal of Bacteriology 187, 8470-8476.
15. Martin., N.M.A.a.S.F. (2005). Altering protein specificity: techniques and applications. Bioorganic & Medicinal Chemistry 13, 2701-2716.
16. M. Mar Carrio, R.C., Antonio Villaverde. (2000). Fine architecture of bacterial inclusion bodies. Federation of European Biochemical Societies Letters 471, 7-11.
17. K. Honda, M.K., S. Shimizu (2002). Enzymatic preparation of D-b-acetylthioisobutyric acid and cetraxate hydrochloride using a stereo- and/or regioselective hydrolase, 3,4-dihydrocoumarin hydrolase from Acinetobacter calcoaceticus. Applied Microbiology and Biotechnology. 60, 288-292.
18. Marlen Schmidt, D.H., Markus K hler, Ulrike Kirchner,Kerstin Wiggenhorn, Walter Langel, Uwe T. Bornscheuer. (2006). Directed Evolution of an Esterase from Pseudomonas fluorescens Yields a Mutant with Excellent Enantioselectivity and Activity for the Kinetic Resolution of a Chiral Building Block. ChemBioChem 7, 805-809.
19. Andreas Heine, G.D., John G. Luz, Michael Mitchell, Chi-Huey Wong, Ian A. Wilson (2001). Observation of Covalent Intermediates in an Enzyme Mechanism at Atomic Resolution Science 294, 369-374.
20. N. Krebsfa¨nger, F.Z., J. Altenbuchner, U. T. Bornscheuer. (1998). Characterization and enantioselectivity of a recombinant esterase from Pseudomonas fluorescens. Enzyme and Microbial Technology 22, 641-646.
21. Jeremy D. Cheeseman, A.T., Seongsoon Park, Joseph D. Schrag, Romas J.Kazlauskas (2004). Structure of an aryl esterase from Pseudomonas fluorescens. Acta Crystallographica Section D 60, 1237-1243.
22. Geoff P.Horsm an, A.M.F.L., Erik Henke, Uwe T.Bornsche uer, Romas J.Kazlausk. (2003). Mutations in Distant Residues Moderately Increase the Enantioselectivity of Pseudomonas fluorescens Esterase towards Methyl 3-Bromo-2-methylpropanoate and Ethyl 3-Phenylbutyrate. Chemistry - A European Journal . 9, 1933-1939.
23. Seongsoon Park, K.L.M., Geoff P. Horsman, Mats Holmquist, Karl Hult, Romas J. Kazlauskas (2005). Focusing Mutations into the P. fluorescens Esterase Binding Site Increases Enantioselectivity More Effectively than Distant Mutations. Chemistry & Biology 12, 45-54.
24. Nuria González-Montalbán, E.G.-F., Antonio Villaver (2007). Recombinant protein solubility—does more mean better? Nature Biotechnology 25, 718-820.
25. Andrea Vera, N.G.l.-M.n., Anna Arı´s, Antonio Villaverde (2006). The Conformational Quality of Insoluble Recombinant Proteins Is Enhanced at Low Growth Temperatures. Biotechnology and Bioengineering 96, 1101-1106.
26. Elena Garc’a-Fruito’ s, M.M.C., Anna Ar’s, Antonio Villaverde (2005). Folding of a Misfolding-Prone b-Galactosidase in Absence of DnaK. Biotechnology and Bioengineering 90, 869-875.
27. Ruben J. Martinez-Torres, J.P.A., Roger George, Paul A. Dalby (2007). Structural stability of E. coli transketolase to urea denaturation. Enzyme and Microbial Technology 41, 653-662.
28 . Ian T Paulsen, Caroline M Press, Jacques Ravel, Donald Y Kobayashi, Garry S A Myers, Dmitri V Mavrodi, Robert T DeBoy, Rekha Seshadri, Qinghu Ren, Ramana Madupu, Robert J Dodson, A Scott Durkin, Lauren M Brinkac, Sean C Daugherty, Stephen A Sullivan,Mary J Rosovitz, Michelle L Gwinn, Liwei Zhou, Davd J Schneider, Samuel W Cartinhour,William C Nelson, Janice Weidman, Kisha Watkins, Kevin Tran, Hoda Khouri, Elizabeth A Pierson, Leland S Pierson III, Linda S Thomashow & Joyce E Loper.(2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology 23, 873-878.
29 . Nobuya Itoh a, Takafumi Kawanami a, Ji-Quan Liu a, Tohru Dairi a, Masao Miyakoshi b, Chigusa Nitta b, Yoshio Kimoto. (2001) Cloning and biochemical characterization of Co2+ activated bromoperoxidase-esterase (perhydrolase) from Pseudomonas putida IF-3 strain. Biochimica et Biophysica Acta 1545,53-66.
30 . Takafumi Kawanami, Masao Miyakoshi, Tohru Dairi, and Nobuya Itoh (2002) Reaction Mechanism of the Co2+ Activated Multifunctional Bromoperoxidase-Esterase from Pseudomonas putida IF-3. Archives of Biochemistry and Biophysics 398.94-100