簡易檢索 / 詳目顯示

研究生: 陳威志
Chen, Wei-Chih
論文名稱: 利用微卡計所得資訊設計肌酸酐分子模版
To Design the Creatinine Imprinted Polymers Based on the Information from Microcalorimeter
指導教授: 周澤川
Chou, Tse-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 211
中文關鍵詞: 肌酸酐肌酸分子模版等溫滴定微卡計
外文關鍵詞: Creatinine, MIP, Isothermal Titration, Microcalorimeter, Creatine
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   臨床檢驗血清或尿液的肌酸酐濃度可協助醫生診斷病人的腎功能是否健全。但是傳統上採取的Jaffe反應對肌酸酐的專一性不夠高,有很多學者嘗試去發展新的方法來改善偵測之精準度。本研究分為三個部分來探討肌酸酐吸附鍵結的機制,如何選擇功能性單體以及用來製作高選擇性的肌酸酐分子模版。首先測量肌酸、肌酸酐及MAA等功能性單體各別的酸鹼度,得知MAA比NVP及HEMA更具酸性,然而肌酸酐在水溶液中為鹼性液體,所以可預期以MAA所製備的分子模版,對肌酸酐的吸附量將會比用HEMA或NVP所製備的分子模版的吸附量較高。第二個部分是使用不同的功能性單體進行等溫滴定肌酸酐粉體及水溶液,可以判定肌酸酐與功能性單體之間的交互作用,如以等溫滴定肌酸酐水溶液時,所得結果必需扣除功能性單體與水的作用,才能得到肌酸酐與功能性單體的淨作用程度。這些滴定結果證實MAA比起NVP或HEMA確實跟肌酸酐有較高的放熱反應。藉由文獻的數學模擬(或者等溫滴定,將所得的熱訊號累計後),其累計所得兩條線性迴歸直線的交點(轉曲點),皆可推論出一個肌酸酐分子可同時與多少單體分子作用,而結果顯示在25℃時,平均2.14個MAA分子會與肌酸酐作用,NVP則是2.8,而HEMA為3.38。如果在25℃下進行聚合,則此時聚合溶液中的錯化合物上的HEMA會被固定化,則此分子模版的選擇性將會比用其他單體所製備的分子模版來得高。最後是製備分子模版粉體以及使用微壓印技術的分子模版薄膜,來觀察真實的吸附鍵結機制,結果顯示以MAA製備的分子模版對肌酸酐的吸附量,遠大於其他功能性單體製備的分子模版,相對於分子模版,非分子模版的吸附量也相當高,以MAA製備分子模版的選擇性高於其他功能性單體所製備的分子模版,這是因為MAA所形成的錯化合物在較高的聚合溫度下,仍保持完整,而且MAA本身就具有辨識酸性與鹼性分子的能力,使用微壓印技術製備分子模版可將非分子模版的吸附量降低。

      The creatinine concentrations in serum or urine are very important determinants to help doctors to diagnose whether a patient’s kidney function is satisfactory. Consequently, there are many researchers trying to develop improving methods to quantify the exact concentration of creatinine in serum and urine due to the non-specific of traditional method to measure the conc. of creatinine. In this work, three different experiments were performed, and we tried to explain the binding mechanism between creatinine and functional monomer and how to select a monomer to prepare a creatinine MIP with high selectivity. First, the pH of several functional monomers, creatine, and creatinine aqueous solution were measured. The result shows MAA is more acidic than HEMA or NVP, and creatinine is a basic compound. So we can predict an MAA based MIP will interact with creatinine more strongly than HEMA and NVP based MIPs. Functional monomers were titrated to creatinine particles and creatinine solutions in order to understand the interaction between functional monomers and creatinine. The isothermal titration confirmed the interaction between MAA and creatinine was stronger than HEMA and NVP. We also found how many functional monomer molecules will interact with one creatinine at 25℃ by accumulating the heat response from the titrating process of each functional monomer and the critical point of the titration process. There were 2.14 MAA monomer molecules interacting with one creatinine. For NVP and HEMA the binding ratios were 2.8 and 3.38, respectively. So if the HEMA in the complex of HEMA and creatinine was fixed to form a MIP at 25℃, the selectivity of this MIP would be better than another functional monomer based MIP due to the larger ratio of HEMA/Crn at the critical point. Finally, MIP particles and micro-contact MIP films were prepared to examine the real binding mechanism. Results showed the amount of creatinine adsorbed by the MAA based MIP was higher than that of the other functional monomer based MIPs. The non-imprinted polymer particles still adsorbed almost same amount of creatinine with respect to the imprinted polymer particles. The selectivity of the MAA based MIP was better than that of the HEMA based MIP. This is because the complex formed by MAA and creatinine may not have been destroyed at the high polymerizing temperature and MAA can recognize basic materials due to the nature of acid-base complement. We also prepared a micro-contact MIP film on two glass surfaces and managed to reduce the amount of adsorption by the non-imprinted polymer films.

    中文摘要.........................................II Abstract.........................................IV 致 謝............................................VI 目錄............................................VII 表目錄...........................................XI 圖目錄..........................................XII 專有名詞對照表..................................XVI 第一章 緒論.......................................1 1-1 肌酸酐之科學探索...........................1 1-2 肌酸與肌酸酐的代謝.........................7 1-3 肌酸酐之臨床意義..........................10 1-4 肌酸酐之檢測方法..........................16 1-5 肌酸酐之人工結合劑合成與感測電極..........20 1-5-1 超分子化學之人造吸附劑...............20 1-5-2 肌酸酐之分子模版.....................30 1-6 研究動機..................................36 第二章 原理......................................37 2-1 分子模版..................................37 2-1-1起源與發展............................37 2-1-2 分子模版原理.........................41 2-1-3 影響辨識性的因素.....................44 2-1-3-1 功能性單體種類與產生的作用力....44 2-1-3-2 熱力學條件......................44 2-1-4 分子模版的應用.......................53 2-2 微熱卡計..................................55 2-2-1 簡介.................................55 2-2-2 等溫滴定(Isothermal titration)之應用.59 第三章 實驗設備與方法............................63 3-1 藥品與儀器................................63 3-1-1 藥品.................................63 3-1-2 儀器.................................65 3-2 實驗方法..................................67 3-2-1 藥品純化.............................67 3-2-1-1 交聯劑EGDMA(EDMA)之純化.......67 3-2-1-2 功能性單體MAA之純化.............68 3-2-1-3 起始劑(AIBN)之純化............68 3-2-2 分子模版粉粒體之製備.................68 3-2-3 微壓印分子模版薄模之製備.............70 3-2-3-1 玻璃清洗與改質..................70 3-2-3-2 分子模版-微壓印薄膜(micro-contact polymer film)之壓印與聚合......72 3-2-4 HPLC操作與前處理.....................75 3-2-5 模版吸附分析.........................77 3-2-5-1 高分子粉體吸附分析..............77 3-2-5-2 高分子膜的吸附分析..............78 3-2-6 微熱卡計之等溫滴定...................79 3-2-7 化合物之酸鹼測定.....................81 第四章 結果與討論................................82 4-1 物性測試..................................82 4-1-1 肌酸酐對各種溶劑之溶解度.............82 4-1-2 HPLC分析肌酸酐之穩定度...............84 4-1-3 化合物之酸鹼測試.....................86 4-2 微卡計之等溫滴定..........................89 4-2-1 修改微卡滴定理論方程式...............89 4-2-2功能性單體及水對肌酸酐固體顆粒的作用觀測 ............................96 4-2-3 功能性單體與肌酸酐水溶液之滴定觀測..109 4-2-4 功能性單體與EDMA交聯劑的作用........123 4-2-5 單體與肌酸固體之等溫滴定............125 4-3 分子模版粉體測試......................127 4-3-1 不同單體所製作分子模版之吸附比較....127 4-3-2 不同聚合溫度所製作分子模版之吸附比較128 4-3-3 不同功能性單體含量所製作分子模版之吸附 比較................................128 4-3-4 雙乙烯基(EDMA)與三乙烯基(PETA)之交 聯劑所製作分子模版之吸附比較........129 4-3-5 溶劑對所製作分子模版之吸附影響......130 4-3-6 以HEMA為功能性單體的分子模版之吸附等溫 線與吸附模式........................131 4-3-7 再現性..............................132 4-3-8 分子模版對干擾物之吸附..............132 4-4 微壓印(micro-contact)製備高分子薄膜測試..150 4-4-1 接觸角之間接測試玻璃吸附肌酸酐與MAA.150 4-4-2 微壓印之分子模版高分子膜............152 第五章 綜合討論.................................156 第六章 結論與建議...............................163 參考文獻........................................164 附錄A UV光譜與檢量線............................175 附錄B Jaffe reaction之UV檢量....................182 附錄C 溶解參數與氫鍵............................183 附錄D 肌酸酐類似物之合成步驟....................185 附錄E 分子模版清洗液分析(UV、HPLC)............189 附錄G 微卡......................................190 附錄H...........................................198

    1. 何敏夫, 臨床化學 clinical chemistry 3rd, 合記圖書 (2000).

    2. Andersson, L., Preparation of amino acid ster-selective cavities formed by non-covalent mprinting with a substrate in highly cross-linked polymers, React. Polym., 9, 29-41 (1988).

    3. Andersson, L. B., Ekberg, B., and Mosbach, K.,Synthesis of a new amino acid based cross-linker for preparation of substrate selective acrylic polymers, Tetrahed. Lett., 26, 3623-3624 (1985).
    4. Andersson, L. B., Sellergren, B., and Mosbach, K., Imprinting of amino acid derivatives in macroporous polymers, Tetrahed. Lett., 25, 5211-5214 (1984).

    5. Ansell, R. J., and Mosbach, K., Molecularly imprinted polymers by suspension polymerisation in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent, Journal of Chromatography A, 787, 55-66 (1997).

    6. Arshady, R., and Mosbach, K., Synthesis of substrate-selective polymers by host-guest polymerization., Makromol. Chem., 182, 687-692 (1981).

    7. Beckles, D. L., Maioriello, J., Santora, V. J.,and Bell, T. W., Complexation of Creatinine by Synthetic Receptors, Tetrahedron, 51, 363-376 (1995).

    8. Bell, T. W., Hext, N. M., and Khasanov, A. B.,Binding biomolecules with designed,hydrogen-bonding receptors, Pure and appl.Chem., 70, 2371-2377 (1998).

    9. Bell, T. W., Hou, Z., Luo, Y., Drew, M. G. B.,Chapoteau, E., Czech, B. P., and Kumar, A.,Detection of Creatinine by A Designed Receptor,Science, 269, 671-674 (1995).

    10. Bishop, M. L., Duben-Engelkirk, J. L., and Fody, E. P., Clinical Chemistry -- Principles,Procedures, Correlations 2nd, J. B. Lippincott company.
    11. Blandamer, M. J., Cullis, P. M., and Gleeson,P. T., Kinetics and thermodynamics of heat conduction microcalorimetry, Journal of Physical Organic Chemistry,12, 343-346 (2002).

    12. Bloch, K., and Schoenheimer, R., Studies in protein metabolism.ⅩⅠ. The metabolic relation of creatine and creatinine studied with isotopic nitrogen., J. Biol. Chem., 131,111-119 (1939).

    13. Bloch, K., and Schoenheimer, R., The biologicalm formation of creatine., J. Biol. Chem., 133,633-634 (1940).

    14. Bloch, K., and Schoenheimer, R., The biological origin of the amidine group in creatine., J.Biol. Chem., 134, 785-786 (1940).

    15. Bowers, L. D., and Wong, E. T., Kinetuc serum creatinine assays. Ⅱ. A critical evaluation and review, Clin. Chem., 26, 551-554 (1980).

    16. Brosook, H., and Dubnoff, J. W., The formation of glycocyamine in animal tissues., J. Biol.Chem., 138, 389-403 (1841).

    17. Brosook, H., and Dubnoff, J. W., The formation of creatine from glycocyamine in the liver., J.Biol. Chem., 132, 559-574 (1940).

    18. Brown, N. D., Sing, H. C., Neeley, W. E., and Koetitz, E. S., Serum creatinine by high-performance liquid chromatography combined with a continuous-flow microanalyzer, Clin.Chem., 23, 1281-1283 (1977).

    19. Buhlmann, P., Badertscher, M., and Simon, W.,Molecuar Recognition of Creatinine, Tetrahedron, 49, 595-598 (1993).

    20. Buhlmann, P., and Simon, W., Neutral Hosts for the Complexation of Creatinine, Tetrahedron,49, 7627-7636 (1993).

    21. Burtis, C. A., and Ashwood, E. R., Tietz testbook of clinical chemistry, Saunders,Philadelphia (1994).

    22. Chen, W. Y., Lee, J. F., Wu, C. F., and Tsao,H. K., Microcalorimetric studies of the interactions of lysozyme with immobilized Cu (Ⅱ) : effects of pH value and salt concentration, Journal of Colloid and Interface Science, 190, 49-54 (1997).

    23. Coe, F. L., Laboratory and Clinical assessment of the patient with renal disease. The kidney.2nd ed., Vol. 1, Saunders, Philadelphia (1981).

    24. Cooper, G. R., Selected Methods of Cliinical Chemistry, Vol. 10, Washington, Americal Association for Clinical Chemistry (1983).

    25. Cormack, P. A. G., and Elorza, A. Z., Molecularly imprinted polymers: synthesis and characterisation, Journal of Chormatography B, 804, 173-182 (2004).

    26. Craw, J. S., Greatibanks, S. P., Hillier, I. H., and Harrison, M. J., Solvation and solid state effects on the structure and energetics of the tautomers of creatinine, J. Chem. Phys., 106, 6612-6617 (1997).

    27. Damen, J., and Neckers, D. C., Stereoselective syntheses via a photochemical template effect, J. Am. Chem. Soc., 102, 3265-3267 (1980).

    28. Edward, K. D. G., and Whyte, H. M., The measurement of creatinine in plasma and urine, Aust. J. Exp. Biol. Med., 36, 383-394 (1958).

    29. Fischer, L., Muller, B., and Mosbach, K., Direct enantioseparation of .beta.-adrenergic blockers using a chiral stationary phase prepared by molecular imprinting, J. Am. Chem. Soc., 113, 9358-9360 (1991).

    30. Folin, O., and Wu, H., A system of blood analysis, J. Biol. Chem., 38, 81 (1919).

    31. Goshe, A. J., Steele, I. M., Christopher, C.,Rheingold, A. L., and Bosnich, B.,Supramolecular recognition: on the kinetic lability of thermodynamically stable host-guest association complexes, PNAS, 99, 4823-4829 (2002).

    32. Groszek, A. J., A calorimeter for determination of heats of wetting, Nature, 182, 1152-1153 (1958).

    33. Haginaka, J., Takehira, H., Hosoya, K., and Tanaka, N., Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen:Comparison of molecular recognition ability of he molecularly imprinted polymers prepared by thermal and redox polymerization techniques,Journal of Chromatography A, 816, 113-121(1998).

    34. Hare, R. S., Endogenous creatinine in serum and urine, Proc. Soc. Exp. Biol. Med., 74, 148-151 (1950).

    35. Henry, R. J., Cannon, D. C., and Winkelman, J.W., Clinical Chemistry: Princilies and Techincs, Harper and Row, New York (1964).

    36. Hoegberge, E. I., and Adams, P., The preparation of Glycocyamidines from substituted cyanamides, J. Am. Chem. Soc., 73, 2942 (1951).

    37. Hosoya, K., Yoshizako, K., Shirasu, Y., Kimata,K., Araki, T., Tanaka, N., and Haginaka, J.Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography structural contribution of cross-linked polymer network on specific molecular recognition, Journal of Chromatography A, 728, 139-147 (1996).

    38. Hsu, H.-C., Chen, L.-C., and Ho, K.-C.Colorimetric detection of morphine in a molecularly imprinted polymer using an aqueous mixture of Fe3+ and [Fe(CN)6]3-, Analytica Chimica Acta, 504, 141-147 (2004).

    39. Ju, J. Y., Shin, C. S., Whitcombe, M. J., and Vulfson, E. N., Binding properties of an aminostyrene-based polymer imprinted with glutamylated monascus pigments, Biotechnology Techniques, 13, 665 (1999).

    40. Ju, J. Y., Shin, C. S., Whitcombe, M. J., and Vulfson, E. N., Imprinted polymers as tools for the recovery of secondary metabolites produced by fermentation, Biotechnology and Bioengineering, 64, 232-239 (1999).

    41. Kallay, N., Interfacial dynamics.

    42. Kanturek, V., Palovsky, V., and Sonka, J.Specificity of the Lloyd reagent for the estimation of creatinine in serum, Cas. Lek.Cesk., 93, 435-436 (1954).

    43. Kaplan, A., Jack, R., Opheim, K. E., Toivola,B., and Lyon, A. W., Clinical Chemistry-Interpretation and Techniques 4th, Williams & Wilkins (1995).

    44. Kaplan, L. A., and Pesce, A. J., Clinical Chemistry theory, analysis, and correlation.45. Khan, G. F., and Wernet, W., A highly sensitive amperometric creatinine sensor, Analytica Chimica Acta, 351, 151-158 (1997).

    46. Kim, E. J., Haruyama, T. Y., Kobatake, E., and Aizawa, M., Disposable creatinine sensor based on thick-film hydrogen peroxide electrode system, Analytica Chimica Acta, 294, 225-231 (1999).

    47. Kriz, D., and Mosbach, K., Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer, Analytica Chimica Acta, 300, 71-75(1995).

    48. Lemieux, U. R., and Spohr, U., How emil fischer was led to the lock and key concept for enzyme specificity, Adv. Carbohydrate Chem. Biochem.50, 1-20 (1994).

    49. Leonhardt, A., and Mosbach, K.Enzyme-mimicking polymers exhibiting specific substrate binding and catalytic functions, React. Polym., 6, 285 (1987).

    50. Liang, C. D., Peng, H., Bao, X. Y., Nie, L. H.and Yao, S. Z., Study of a molecular imprinting polymer coated BAW bio-mimic sensor and its application to the determination of caffeine in human serum and urine, the Analyst, 124, 1781 - 1717 (1999).

    51. Lin, F. Y., Chen, W. Y., and Hearn, M. T. W. Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography : effect of salts,hydrophobicity of the sorbent, and structure of the protein, Anal. Chem., 73, 3875-3883 (2001).

    52. Lin, F. Y., Chen, W. Y., and Sang, L. C.Microcalorimetric studies of the interactions of lysozyme with immobilized metal ions :effects of ion, pH value, and salt concentration, Journal of Colloid and Interface Science, 214, 373-379 (1999).

    53. Madaras, M. B., and Buck, R. P., Miniaturized iosensors employing electropolymerized permselective films and their use for creatinine assays in human serum, Anal. Chem.68, 3832-3839 (1996).

    54. Malik, A., Afza, N., and Siddiqui, S., Some extensions of von Braun(BrCN) reaction on organic bases: Part Ⅱ, Z. Naturforsch. B. Anorg. Chem. Org. Chem., 37, 512-518 (1982).

    55. Mayes, A. G., and Mosbach, K., Molecularly Imprinted Polymer Beads: Suspension Polymerization Using a Liquid Perfluorocarbon as the Dispersing Phase, Anal. Chem., 68,3769-3774 (1996).

    56. McClatchey, K. D., Clinical Laboratory Medicine, 2nd edition, Lippincott Wolliams & Wolkins.57. Moss, G. A., Bondar, R. J. L., and Buzzellii, D. M., Kinetic enzymatic method for determining serum creatinine, Clin. Chem., 21, 1422-1426 (1975).

    58. Mudd, S., A hypothetical mechanism of antibody production, Journal of Immunology, 23, 423 (1932).

    59. Narayanan, S., and Appleton, H. D., Creatinine : A review, Clin. Chem., 26, 1119-1126 (1980). 60. Norrlow, O., Glad, M., and Mosbach, K., Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates, J. Chromatogr., 299, 29-41 (1984).

    61. O'Shannessy, D. J., Ekberg, B., and Mosbach,K., Molecular Imprinting of Amino Acid Derivatives at Low Temperature Using Photolytic Homolysis of Azobisnitriles, Anal. Biochem.177, 144-149 (1989).

    62. Ou, S. H., Wu, M. C., Chou, T. C., and Liu, C. C., Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme, Analytica Chimica Acta, 504, 163-166 (2004).

    63. Owen, J. A., Iggo, B., Schandrett, F. J., and Steward, C. P., The dtermination of creatinine in plasma or serum and in urine. A critical examination, Biochem. J., 58, 426-437 (1954).

    64. Panasyuk-Delaney, T., Mirsky, V. M., and Wolfbeis, O. S.,Capacitive Creatinine Sensor Based on a Photografted Molecularly Imprinted Polymer, Electroanalysis, 14, 221-224 (2002).

    65. Pauling, L., A theory of the structure and process of formation of antibodies, Journal of the american chemical society, 62, 2643-2657 (1940).

    66. Piletska, E. V., Piletsky, S. A., Subrahmanyam, S., Karim, K., and Turner, A. P. F., A new reactive polymer suitable for covalent immobilisation and monitoring of primary amines, Polymer, 42, 3603-3608 (2001).

    67. Rick, J. F., and Chou, T. C., Enthalpy changes ssociated with protein binding to thin films, biosensors and Bioelectronics, In press. 68. Sarhan, A., and Abou-EI-Zahab, M., Racemic Resolution of Mendelic Acid on Polymers with Chiral Cavities. II, Enzyme-Analogue Stereospecific Conversion of Configuration, A. Sarhan and M.M. Abou-Elzahab, Makromol. Chem. Rapid Commun., 8, 555 (1987).

    69. Schneider, J., Grundig, B., Renneberg, R.Cammann, K., and Madaras, M. B., Hydrogel matrix for three enzyme entrapment in creatine/creatinine amperometric biosensing,Analytica Chimica Acta, 325, 161-167 (1996).

    70. Sellergren, B., Molecular imprinting by noncovalent interactions. Enantioselectivity and binding capacity of polymers prepared under conditions favoring the formation of template complexes, Makromol. Chem., 190, 2703-2711 (1989).

    71. Sellergren, B., Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer, Anal. Chem., 66, 1578-1582 (1994).

    72. Sellergren, B., Molecularly Imprinted Polymers , Man-made mimics of antibodies and their applications in analytical chemistry, Vol. 23, Elsevier, New York (2001).

    73. Sellergren, B., Ekberg, B., and Mosbach, K.Molecular imprinting of amino acid dertivatives in macroporous polymers, J. Chromatogr., 347, 1-10 (1985).

    74. Shea, K. J., Thompson, E. A., Pandey, S. D.and Beauchamp, P. S., Template synthesis of macromolecules. Synthesis and chemistry of functionalized macroporous poly(divinylbenzene), J. Am. Chem. Soc., 102, 3149-3155 (1980).

    75. Shih, Y. T., and Huang, H. J., A creatinine deiminase modified polyaniline electrode for creatinine analysis, Analytica Chimica Acta,392, 143-150 (1999).

    76. Soldin, S. J., and Hill, G. J., Micromethod for determination of creatinine in biological fluids by high-performance liquid chromatography, Clin. Chem., 24 (1978).

    77. Spierto, F. W., Hannon, W. H., Gunter, E. W., and Smith, S. J., Stability of urine creatinine, Clinica Chimica Acta, 264, 227-232 (1997).

    78. Spivak, D. A., and Shea, K. J., Investigation into the scope and liminations of molecular imprinting with DNA molecules, Analytica Chimica Acta, 435, 65-74 (2001).

    79. Sreenivasan, K., and Sivakumar, R., Interaction of Molecularly Imprinted Polymers with Creatinine, Journal of Applied Polymer Science, 66, 2539-2542 (1997).

    80. Subrahmanyam, S., Piletsky, S. A., Piletska, E. V., Chen, B., Karim, K., and Turner, A. P. F., 'Bite-and-Switch' approach using computationally designed molecularly imprinted polymers for sensing of creatinine, biosensors and Bioelectronics, 16, 631-637 (2001).

    81. Svec, F., and Frechet, J. M. J., Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography, Anal. Chem., 65, 2243-2248 (1992).

    82. Sweden, T. A., Thermometric 2250-series. 83. Thompson, H., and Rechnitz, G. A., Ion electrode based enzymatic analysis of creatinine, Anal. Chem., 46, 246-249 (1974).

    84. UmplebyⅡ, R. J., Baxter, S. C., Bode, M., Berch Jr., J. K., Shah, R. N., and Shimizu, K. D., Application of the freundlich adsorption isotherm in the characterization of molecularly imprinted polymers, Analytica Chimica Acta,435,
    35-42 (2001).

    85. Vigneaud, V. d., Chandler, J. P., Cohn, M., and Brown, G. B., The transfer of the methyl group from methionine to choline and creatine., J.Biol. Chem., 134, 787-788 (1840).
    86. Vigneaud, V. d., Cohn, M., Chandler, J. P., Schenck, J. R., and Simmons, S., The utilization of the methyl group of metionine in the biological synthesis of choline and creatine., J. Biol. Chem., 140, 625-641 (1841).

    87. Watkins, P. J., The effects of ketone bodies on the determination of creatinine, Clinica Chimica Acta, 18, 191 (1967).

    88. Whitcombe, M. J., Alexander, C., and Vulfson, E. N., Smart polymers for the food industry, Trends Food Sci. Technol., 8, 140 (1997).

    89. Whitcombe, M. J., Rodriguez, M. E., Villar, P., and Vulfson, E. N., A new method for the introduction of recognition site functionality into polymers prepared by molecular Imprinting:synthesis and characterization of polymeric receptors for cholesterol, J. Am. Chem. Soc., 117, 7105-7111 (1995).

    90. Whitcombe, M. J., and Vulfson, E. N., Imprinted polymer, Adv. Mater., 13, 467-477 (2001).

    91. Wiseman, T., Williston, S., Brandts, J. F., and Lin, L. N., Rapid measurement of binding constants and heats of binding using a new titration calorimeter, Analytical Biochemistry, 179, 131-137 (1989).

    92. Wyss, M., and Kaddurah-Daouk, R., Creatine and Creatinine Metabolism, Physiological Reviews, 80, 1107-1213 (2000).

    93. Yu, C., and Mosbach, K., Molecuar imprinting ultilizing an amide functional group for hydrogen bonding leading to highly efficient polymers, J. Org. Chem., 62, 4057-4064 (1997).

    下載圖示 校內:2005-08-26公開
    校外:2005-08-26公開
    QR CODE