| 研究生: |
張翔喻 Chang, Hsiang-Yu |
|---|---|
| 論文名稱: |
以標準化地下水位指數法評估嘉南平原地下水資源開發區位與可開發量評估 Evaluate Potential Sites and Amount of Groundwater Exploitation for Chianan Plain using Standardized Groundwater Index |
| 指導教授: |
李振誥
Lee, Cheng-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 標準化地下水位指數評估法 、標準化雨量指數評估法 、地下水位管理標準線 、地下水資源開發區位 、地下水可開發量 |
| 外文關鍵詞: | Standardized groundwater index, Standardized precipitation index, groundwater level, standard management line, groundwater development area, groundwater exploitation amount |
| 相關次數: | 點閱:181 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球氣候越趨極端,世界上許多地區面臨嚴重的水資源缺乏,台灣因為受到自然條件的限制,即使降雨量高於世界平均卻仍然有缺水的問題,因此需要更好的管理及利用台灣的各種水利設施。本研究利用簡單、有效的缺水指標,分析研究區域嘉南平原長期的雨量及水位資料,首先利用標準化雨量指數法(SPI)及標準化地下水指數法(SGI)計算研究區域的資料並探討其相關性,而後發現在區域內的地下水在SGI的計算結果中不同區域有著不同的特性,因此將研究區域分為南、北兩區,本研究利用一般狀況水位及缺水狀況水位進行比較,得到不同測站在缺水時的水位變化,而後建立地下水位管理標準線。
利用不同測站地下水位變化的不同,進而推估較適合進行開發的測站。但研究區域嘉南平原本身就有受到較為嚴重人為影響,因此本研究將結合研究區域的現況進行篩選,將目前較不適合開發的測站剔除,篩選條件包括地層下陷嚴重區、地下水位低於海平面測站、地下水管制區及水質條件,最後得到位於鹽水溪的永康站是嘉南平原的長期適合開發區位。本研究利用地下水模擬軟體(GMS)做出永康站周圍的水文地質模型,並模擬區域內在不同抽水速率下的地下水位變化,評估區域的可開發量。
關鍵詞: 標準化地下水位指數評估法、標準化雨量指數評估法、地下水位管理標準線、地下水資源開發區位、地下水可開發量
Since climate becomes more and more extreme, many areas are facing serious water shortage. Even thought the precipitation in Taiwan is more than the average precipitation of the world , Taiwan has the problem of water shortage owing to the natural conditions. Hence, it is important to manage and apply the groundwater wells, reservoirs and other facilities wisely. In the present study, using simple and effective method, which includes standardized groundwater index (SGI) and standardized precipitation index (SPI) to calculate long-term precipitation and groundwater data and then analyze those correlation. By the result of SGI, we find out that the study area can be divided into north and south section in Chianan Plain. Furthermore, since declining of groundwater level can reflect the groundwater changes during in drought condition, we also establish the standard management lines of groundwater level in Chianan Plain. After calculating the decline values of groundwater level and comparing various SGI values, the groundwater development area in Chiana Plain can be found out. However, the study area may be influenced extremely by the human activities. Some insuitable area is deleted by the specific conditions currently and the criterions announced by government. As the result, Yongkang station in Yanshui river is selected as the most suitable station for the groundwater development area in our study area. In the end, the hydrogeological model around Yongkang station is also build by using groundwater model system(GMS) in order to estimate and simulate the exploitation amounts of groundwater under various scenarios for the groundwater level changes and pumping rates.
Key Words: Standardized groundwater index, Standardized precipitation index, groundwater level, standard management line, groundwater development area, groundwater exploitation amount.
參考文獻
1. 卓盈敏,盧孟明(2013),近百年台灣異常乾期的分析研究,大氣科學,第四十一卷,第二期,171-188。
2. 洪致文(2012),臺灣降雨指數(TRI)的建立與其分析應用,地理學報,第六十七期,73-96。
3. 陳正達等18人(2014),台灣氣候變遷推估研究,大氣科學,第四十二卷,第三期,207-252。
4. 單信瑜(2005),台灣地下水資源使用與水質現況,水環境教育教師研習活動。
5. 游保杉(2007),臺灣地區乾旱變異趨勢與辨識研究,國家科學委員會研究計畫報告。
6. 張家富(2016),以標準化地下水指數法評估屏東平原地下水資源開發區位之研究。
7. 楊偉甫(2010),台灣地區水資源利用現況與未來發展問題,用水合理化與新生水水源開發論壇。
8. 楊偉甫(2015),流域綜合治理計劃之績效管理機制,國土及公共治理季刊,第三卷,第三期,96-105。
9. 經濟部水利署(2001),嘉南平原區域性地下水觀測站井佈置檢討,經濟部水利署編印。
10. 經濟部水利署(2008),台灣地區地下水觀測網整體計畫(81-97年度)成果彙編,經濟部水利署編印。
11. 經濟部水利署(2012),氣候變遷下台灣地區地下水資源補注之影響評估,經濟部水利署編印。
12. 經濟部水利署(2016),地下水補注地質敏感區劃定計畫書,經濟部水利署編印。
13. 賴典章,費立沅,江崇榮(2003),台灣地下水分區特性,水文地質調查與應用研討會論文集,1-24。
14. Bhuiyan, C., Singh, R.P., and Kogan, F.N. (2006),” Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data,” International Journal of Applied Earth Observation and Geoinformation, 8(4):289-302.
15. Bloomfield, J. P. and Marchant, B. P. (2013). “Analysis of groundwater drought building on the standardised precipitation index approach,” Hydrology and Earth System Sciences, 17: 4769–4787.
16. Dezman, L. E., Shafer, B. A., Simpson, H. D., and Danielson, J. A. (1982).“Development of a surface water supply index—A drought severity indicator for Colorado,” International Symposium on Hydrometeorology, American Water Resources Association, Middleburg, VA.
17. Kemal Sonmez, F., Ali Umran Komuscu, Ayhan Erkan, and Ertan Turgu (2005)” An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index,” Natural Hazards 35: 243–264.
18. Livada, I., and Assimakopoulos, V. D. (2007),” Spatial and temporal analysis of drought in Greece using the Standardized Precipitation Index (SPI),” Theor. Appl. Climatol, 89:143–153.
19. Lloyd-Hughes, B. and Saunders , M. (2002),” A drought climatology for Europe,” Int. J. Climatol, 22:1571–1592.
20. López-Moreno, J. I., Vicente-Serrano, S. M., Beguería, S., García- Ruiz, J. M., Portela, M. M., and Almeida, A. B. (2009). “Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal,” Water Resources Research, 45.
21. McKee, T. B., Doesken, N. J., and Leist, J. (1993), “The relationship of drought frequency and duration time scales,” Proceedings of the Eighth Conference on Applied Climatology, 179–184.
22. Niemeyer, S. (2008). “New drought indices.” Options Méditerranéennes Série A: Séminaires Méditerranéens, 80: 267–274.
23. Palmer, W. C. (1965). “Meteorological drought.” Research Paper No. 45, Weather Bureau, U.S. Dept. of Commerce, Washington, DC.
24. Parthasarathy, B., Munot, A.A. and Kothawale, D.R. (1995),” Monthly and seasonal rainfall series for all India, homogeneous regions and meteorological subdivisions: 1871-1994,” Indian institute of tropical meteorology, 65.
25. Schwartz, F.W. and Zheng, H .(2003), “Fundamentals of groundwater.”
26. Sheffield, J., and Wood, E. F. (2008). “Global trends and variability in soil moisture and drought characteristics,” Journal of Climate, 21: 432–458.
27. Thomas, T., Nayak, P. C., and Ghosh, N. C. (2015),”Spatiotemporal Analysis of Drought Characteristics in the Bundelkhand Region of Central India using the Standardized Precipitation Index,” Journal of Hydrologic Engineering, 20(11):1-12.
28. Tsakiris, G., and Vangelis, H. (2005), ” Establishing a drought index incorporating evapotranspiration,” European water, 9(10):3-11.
29. Tsakiris, G., Nalbantis, I., Vangelis, H., Verbeiren, B., Huysmans, M., Tychon, B., Jacquemin, I., Canters, F., Vanderhaegen, S., Engelen, G. , Poelmans, L., De Becker, P., and Batelaan, O. (2013). “A System-based Paradigm of Drought Analysis for Operational Management,” Water Resour Manage 27,5281-5297.
30. Tsakiris, G., Pangalou, D., and Vangelis, H. (2007),” Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI),” Water Resour Manage, 21:821-833.
31. Vicente-Serrano, S. M. and López-Moreno, J. I. (2005). “Hydrological response to different time scales of climatological drought: an evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin,” Hydrology and Earth System Sciences, 9: 523–533.
32. Vidal, J.P., Martin, E., Franchistéguy, L., Habets, F., Soubeyroux, J.-M., Blanchard, M., and Baillon, M. (2010). “Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite,” Hydrology and Earth System Sciences, 14: 459–478.
33. Wilhite, D.A.(1993). “Drought assessment, management, and planning: theory and case studies.
校內:2018-07-30公開