| 研究生: |
林政勳 Lin, Cheng-Hsun |
|---|---|
| 論文名稱: |
觸覺回饋雙向控制應用於虛實整合人機互動系統 Haptic Feedback Bilateral Control Applied in Human-Machine Interaction and Cyber-Physical System |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 機械手臂 、人機協作 、雙向控制 、觸覺回饋 、虛實整合 |
| 外文關鍵詞: | robot manipulator, bilateral control, haptic feedback, human-machine interaction, cyber-physical system |
| 相關次數: | 點閱:179 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著工業生產邁向自動化、智慧化,越來越多機器人導入到自動化生產,然而傳統之教導方法是用教導器進行路徑規劃,在操作上較為困難且耗費大量時間成本,因此人機協作的教導方式已成為重要的發展趨勢。本論文以導納控制使機械手臂順應操作者的力量移動,實現人機教導的功能,並透過VR技術建立擬真之虛擬實境,使操作者能與虛擬環境互動進行模擬訓練;並藉由雙向控制系統實現實體端與虛擬端達到同步運動,將虛擬端之環境阻力回饋置操作者手中,達到擬真的觸覺回饋。然而,虛擬實境的動態模型與實際系統存在模型誤差,降低觸覺回饋的靈敏度與位置追隨的效果,進而影響人機互動的性能。本論文提出模型修正架構,透過補償器之設計使主、從端之速度誤差快速收斂,實現雙端等效模型的效果,使操作者能感受到更真實的觸覺體驗。此外,透過記錄操作者教導的力量與運動軌跡,可以使機械手臂重現相同的運動模式,藉此驗證雙向控制在教導應用之可行性。
In recent years, the industrial automation has been developing rapidly, robot manipulators are frequently used in industrial production. However, the traditional teaching method is to use the teach pendant for path planning, this method takes lots of time and is difficult for user to operate. In this study, the intuitive teaching method is developed, operators can grasp a robot manipulator’s end effector to guide a trajectory for motion planning. By establishing a realistic virtual reality through VR technology, operator can interact with the virtual environment for simulation training. The Admittance control is used to make the robot manipulator move in accordance with the operator's strength; by integrating bilateral control system, two manipulators in real system and virtual reality can move synchronously, and the resistance from virtual environment will feedback into operator’s hands. The transparency of haptic feedback is crucial for human-machine interactions, however, dynamic model from system identification exist modeling error, which reduces sensitivity of haptic feedback and the effect of position tracking. This paper proposes a model correction structure, the velocity error between the real and virtual system can be converged quickly, so that the operator can feel a more realistic tactile experience. In addition, by recording the force and trajectory taught by the operator, the robot manipulator can reproduce the same motion. The feasibility of proposed control system is verified through the experiment result.
[1] G. C. Burdea, "Invited review: the synergy between virtual reality and robotics," IEEE Transactions on Robotics and Automation, vol. 15, no. 3, pp. 400-410, 1999
[2] 蔡佳雯, 「針對工業機械手臂之沉浸式三維操控介面研發」, 碩士論文,國立交通大學學電控工程研究所, 2017.
[3] R. Crespo, R. García and S. Quiroz, "Virtual reality simulator for robotics learning," International Conference on Interactive Collaborative and Blended Learning (ICBL), pp. 61-65, 2015
[4] J. M. Zheng, K. W. Chan and I. Gibson, "Virtual reality," IEEE Potentials, vol. 17, no. 2, pp. 20-23, 1998
[5] C. Anthes, R. J. García-Hernández, M. Wiedemann and D. Kranzlmüller, "State of the art of virtual reality technology," IEEE Aerospace Conference, pp. 1-19, 2016
[6] C. Ott, R. Mukherjee, and Y. Nakamura, “A hybrid system framework for unified impedance and admittance control,” Journal of Intelligent & Robotic System, vol. 78, no. 3-4, pp. 359-375, 2015
[7] F. Dimeas and N. Aspragathos, "Online Stability in Human-Robot Cooperation with Admittance Control," IEEE Transactions on Haptics, vol. 9, no. 2, pp. 267-278, 2016
[8] F. Dimeas, V. C. Moulianitis, C. Papakonstantinou and N. Aspragathos, "Manipulator performance constraints in Cartesian admittance control for human-robot cooperation," IEEE International Conference on Robotics and Automation, pp. 3049-3054, 2016
[9] S. Katsura, Y. Matsumoto, and K. Ohnishi, “Realization of "Law of action and reaction by multilateral control,” IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1196-1205, 2005.
[10] S. Katsura, and K. Ohnishi, “A realization of haptic training system by multilateral control,” IEEE Transactions on Industrial Electronics, vol. 53, no. 6, pp. 1935-1942, 2006.
[11] N. Hogan, “Impedance control: An approach to manipulation: Part I—Theory, Part II—Implementation, Part III—Application,” Journal of Dynamic Systems, Measurement, and Control, vol. 107, no. 1, pp. 1-23, 1985.
[12] R. Riener, M. Frey, M. Bernhardt, T. Nef and G. Colombo, "Human-centered rehabilitation robotics," 9th International Conference on Rehabilitation Robotics, pp. 319-322, 2005.
[13] W. S. Newman, “Stability and Performance Limits of Interaction Controllers,” Journal of Dynamic Systems, Measurement, and Control, vol. 114, pp. 563-570, 1992.
[14] 胡家勝,「阻抗控制於力覺回饋控制應用之設計與實現」,碩士論文,國立成功大學機械工程研究所,2003。
[15] R. D. Lorenz, and P. B. Schmidt, “Synchronized motion control for process automation,” IEEE Industry Applications Society Annual Meeting, pp. 1693-1698, 1989.
[16] H. Tanaka et al., "Implementation of Bilateral Control System Based on Acceleration Control Using FPGA for Multi-DOF Haptic Endoscopic Surgery Robot," IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 618-627, 2009.
[17] K. Bark, W. McMahan, A. Remington, J. Gewirtz, A. Wedmid, D. I. Lee, K. J. Kuchenbecker, “In vivo validation of a system for haptic feedback of tool vibrations in robotic surgery,” Surgical Endoscopy, vol. 27, no. 2, pp. 656-664, 2013.
[18] C. Mitsantisuk and K. Ohishi, “Robotics-assisted rehabilitation therapy for the hands and wrists using force sensorless bilateral control with shadow and mirror mode,” IEEE International Conference on Mechatronics(ICM), pp. 541-546, 2015.
[19] 李松育,「應用觸覺回饋多向控制於虛擬實境之實現方法」,碩士論文,國立成功大學機械工程研究所,2019。
[20] S. Hangai, K. Oda, T. Nozaki, and K. Ohnishi, “Fiber Suspended Micro Force Transmission System using Scaling Bilateral Control”, Conference of IEEE Industrial Electronics Society, pp. 4575-4580, 2018.
[21] 徐肇康,「具外擾補償之觸覺雙向控制應用於虛擬實境」,碩士論文,國立成功大學機械工程研究所,2020。
[22] T. T. Khang, I. H. Tsai, J. Y. Yen, T. C. Tsao, M. C. Tsai, “Improved Haptic Transparency of Bilateral Control using Torque-measured Magnetic Coupling” Machines, vol. 9, no. 8, pp. 172, 2021.
[23] 吳權倫,「伺服模墊系統之雙向控制應用」,碩士論文,國立成功大學電機工程研究所,2021。
[24] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control: John Wiley & Sons New York, 2006.
[25] F. King Sun, R. C. Gonzalez, and C. S. G. Lee, Robotics: control, sensing, vision, and intelligence: McGraw-Hill Inc., 1987.
[26] H.Asada and JJE.Slotine, Robot analysis and control: John Wiley &Sons, 1986.
[27] E. Magrini, F. Flacco and A. De Luca, "Estimation of contact forces using a virtual force sensor," IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2126-2133, 2014.
[28] S. H. Yen, P. C. Tang, Y. C. Lin, C. Y. Lin, “Development of a Virtual Force Sensor for a Low-Cost Collaborative Robot and Applications to Safety Control,” Sensors, vol. 19, no. 11, pp. 2603, 2019.
[29] A. D. Luca, “Inverse differential kinematics Statics and force transformations” http://www.diag.uniroma1.it/~deluca/rob1_en/12_InverseDiffKinStatics.pdf
[30] F. Caccavale and P. Chiacchio, “Identification of dynamic parameters and feedforward control for a conventional industrial manipulator,” Control Eng. Practice, vol. 2, no. 6, pp. 1039–1050, 1994.
[31] W. N. White, D. D. Niemann and P. M. Lynch, "The presentation of Lagrange's equations in introductory robotics courses," IEEE Transactions on Education, vol. 32, no. 1, pp. 39-46, 1989.
[32] S. Dong, Z. Yuan, and F. Zhang, “A Simplified Method for Dynamic Equation of Robot in Generalized Coordinate System,” Journal of Physics: Conference Series, vol. 1345, no. 4, pp. 042077, 2019.
[33] P. I. Corke and B. Armstrong-Helouvry, "A search for consensus among model parameters reported for the PUMA 560 robot," IEEE International Conference on Robotics and Automation, vol. 2, pp. 1608-1613, 1994.
[34] V. J. Lumelsky and E. Cheung, "Real-time collision avoidance in teleoperated whole-sensitive robot arm manipulators," IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 1, pp. 194-203, 1993.
[35] H. Koch, A. Konig, A. Weigl-Seitz, K. Kleinmann and J. Suchy, "Multisensor Contour Following With Vision, Force, and Acceleration Sensors for an Industrial Robot," IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 2, pp. 268-280, 2013.
[36] F. Petit, A. Dietrich and A. Albu-Schäffer, "Generalizing Torque Control Concepts: Using Well-Established Torque Control Methods on Variable Stiffness Robots," in IEEE Robotics & Automation Magazine, vol. 22, no. 4, pp. 37-51, 2015.
[37] A. Karimi, M. Navidbakhsh, and A. M. Haghi, “An Experimental Study on the Structural and Mechanical Properties of Polyvinyl Alcohol Sponge Using Different Stress–Strain Definitions” Advances in Polymer Technology, vol. 33, 2014.
[38] https://smallcollation.blogspot.com/2014/02/youngs-modulus.html#gsc.tab=0
[39] K. M. E. Dine, J. Sanchez, J. A. C. Ramon, Y. Mezouar, and J. Fauroux “Force-Torque Sensor Disturbance Observer using Deep Learning” International Symposium on Experimental Robotics, 2018.
[40] D. Ma, J. M. Hollerbach, and Y. Xu, “Gravity based autonomous calibration for robot manipulators” International Conference on Robotics and Automation, vol. 4, pp. 2763-2768, 1994.
[41] D. Ma, and J. M. Hollerbach, “Identifying mass parameters for gravity compensation and automatic torque sensor calibration” International Conference on Robotics and Automation, vol. 1, pp. 661-666, 1996.
校內:2027-08-17公開