| 研究生: |
陳啟鈞 Chen, Chi-Chun |
|---|---|
| 論文名稱: |
跳視眼球運動之模擬 Simulation of Saccadic Eye Movements |
| 指導教授: |
陳天送
Chen, Tain-Song 陳永福 Chen, Yung-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 模型 、加速時間 、跳視 、曲斜率 |
| 外文關鍵詞: | saccade, model, acceleration time, skewness |
| 相關次數: | 點閱:57 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
跳視的準確與否,和傳送到運動神經元之刺激訊號強度有關。如果在跳視的神經傳導路徑中,有某些神經元產生病變或退化,跳視將會失去其準確度。近來已有許多神經生理及神經解剖的研究資料陸續被提出,除了可以解釋跳視產生的神經生理機制外,也有助於跳視系統的模擬。
對於利用目前已發展的跳視模型來模擬人類跳視的過程中,一般會遭遇兩個問題。第一,幾乎所有的模型都是根據所量測知猴子數據所建立的,而猴子的跳視要比人類快許多。而調整模型某些參數可以有效地降低速度,產生較慢的跳視。第二,目前跳視模型的效率皆經由評估主序列之動態關係為基礎,並未考慮到其它參數(例如,加速時間和曲斜率)。腦幹模型乃是基於猴子外展神經核的生理資料所建構的模型,目前雖然已被應用在模擬人類警覺程度及猴子小腦病變的跳視軌跡上,但其所產生的速度軌跡之加速時間太短。而利用最小變異理論所發展出的模型加速時間則太長。
在本論文中,我們嘗試利用靈長類的小腦模型模擬人類的跳視軌跡。經由調整腦幹之相關參數及齒狀核動眼區(FOR)之輸出訊號,小腦模型可以有效產生加速時間和實驗數據非常一致之跳視軌跡。本研究發現整合齒狀核動眼區和腦幹之小腦模型可以有效地產生與現有的跳視軌跡非常一致的跳視軌跡。另外我們證明小腦在跳視加速相與減速相的時間調控扮演非常重要的角色。
Abstract
To attain saccadic accuracy, it requires that the control signals sent to the motor neurons have to be the right size to bring the fovea to the target. Accuracy will be lost if the neurons responsible for the generation of saccades are degenerated or disordered. Recently, neurophysiological and neuroanatomical data have been proposed to explain the mechanism of saccade generation, which are also helpful in modeling saccadic system.
There are two problems encountered for the existing models in generating accurate human saccades. Firstly, most models were built based on the data recorded from monkeys that were known to generate faster saccades than the human, several parameters have to be adjusted to fit slower saccades for the latter. Secondly, efficiency of the existing models was judged by the main sequence relations only, while other parameters such as acceleration time and skewness are not considered at all. For example, the brain stem model, which was constructed based on the primate abducean neurons and has been used extensively in simulating saccades with bluntness of vigilance state and lesioned cerebellum, generates velocity profiles with the acceleration time is too short, while it is too long for the model developed based on the minimum variance theory.
In this thesis, we intended to simulate human saccades by tuning the parameters based on the cerebellar model that were built according to the primate data. By tuning the parameters of the brain stem and the signals from the fastigial ocular region (FOR), the cerebellar model is able to generate velocity profile that the acceleration time is in agreement with the experiment. It is concluded that the cerebellar model, which integrates the FORs and the brain stem, can efficiently generate velocity profiles agreed with the recorded profiles. Also the cerebellum plays an important role in chronically regulating the time course of acceleration and deceleration phases of saccades.
參考文獻
[1] F. W. Newell, Ophthalmology principles and concepts 7th ed., Mosby Year Book, 1992.
[2] K. J. Ciuffreda and B. Tannen, Eye Movement Basic for the Clinician, Mosby, 1995.
[3] E. Kowler, “The stability of gaze and its implications for vision,” In Eye Movements. ed. Carpenter RHS. Macmillan vol. 7, pp. 71-92, 1991.
[4] R. J. Leigh, and D. S. Zee, The neurology of eye movements. 3rd ed. Oxford University Press 1999.
[5] C. Pierrot-Deseilligny, S. Rivaud, B. Gaymard, R. Muri, and A. I. Vermersch, “Cortical control of saccades,” Ann. Neurol. vol. 37, pp. 557-567, 1995.
[6] E. L. Keller, “Control of saccadic eye movements by midline brainstem neurons. In: Control of gaze by brainstem neurons,” Eds. R. Baker and A. Berthoz, Amsterdam, Elsevier, vol. 3, pp. 327-336, 1977.
[7] A. F. Fuchs, C. R. S. Kaneko, and C. A. Scudder, “Brainstem control of saccadic eye movements,” Ann. Rev. Neurosci., vol. 8, pp. 307-337, 1985.
[8] D. A. Robinson, “A method of measuring eye movement using a scleral search coil in a magnetic field,” IEEE Trans. Biomed Electron, vol. 10, pp. 137-145, 1964.
[9] Akinor Ueno, Tsuyoshi Tateyama, Moriichiro Takase, “ Bluntness of saccadic eye movement depending on vigilance states-examination by model simulation-,” in Proc. 19th Ann. Int. Conf. IEEE Eng. Med. Bio. Soc., pp. 1482-1485, 1997.
[10] Dean, “Modelling the role of the cerebellar fastigial nuclei in producing accurate saccades: the importance of burst timing,” Neuroscience vol. 68, no. 4, pp. 1059-1077, 1995.
[11] R. W. Baloh, A. W. Sill, W. E. Kumley, and V. Honrubia, “Quantitative measurement of saccade amplitude, duration, and velocity,” Neurology vol. 25, pp. 1065-1070, 1975.
[12] H. Collewijn, C. J. Erkelens, and R. M. Steinmam, “Binocular coordination of human horizontal saccadic eye movements,” J. Physiology vol. 404, pp. 157-182, 1988.
[13] 施怡芬, 跳視眼球運動的峰值速度與曲斜率關係之研究, 國立成大大學醫學工程研究所碩士論文, 1999.
[14] A. J. Van Opstal, and A. M. Van Gisbergin, “Skewness of saccadic velocity profiles: A unifying parameter for normal and slow saccades,” Vision Res. vol. 27, pp. 731-745, 1987.
[15] D. A. Robinson, “Oculomotor unit behavior in the monkey,” J. Neurophysiol. vol. 33, pp. 393-404, 1970.
[16] J. A. M. Van Gisbergen, D. A. Robinson, and S. Gielen, “A quantitative analysis of generation of saccadic eye movements by burst neurons,” J. Neurophysiol. vol. 45, pp. 417-442, 1981.
[17] A. F. Fuchs, C. A. Scudder, and C. R. S. Kaneko, “Discharge patterns and recruitment order of identified motorneurons and internuclear neurons in the monkey abduceans nucleus,” J. Neurophysiol. vol. 60, pp. 1874-1895, 1988.
[18] P. A. Sylvestre, and K. E. Cullen, “Quantitative analysis of abducean neuron discharge dynamics during saccadic and slow eye movements,” J. Neurophysiol. vol. 82, pp. 2612-2632, 1999.
[19] D. A. Robinson, “Oculomotor control signals. In: Basic mechanisms of ocular motility and their clinical implications,” Edited by G. Lennerstrand and P. Bach-y-Rita. Oxford, UK. Pergamon pp. 337-374 1975.
[20] R. Jurgens, W. Becker, and H. H. Kornhuber, “Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback,” Biol. Cybern. vol. 39, pp. 87-96, 1981.
[21] D. Tweed, and T. Vilis, “A two dimensional model for saccade generation,” Biol. Cybern. vol. 52, pp. 219-227, 1985.
[22] C. A. Scudder, “A new local feedback model of the saccadic burst generator,” J. Neurophysiol. vol. 59, pp. 1455-1475, 1988.
[23] A. K. Moschovakis, C. A. Scudder, and S. H. Highstein, “The microscopic anatomy and physiology of the mammalian saccadic system,” Prog. Neurobiol. Vol. 50, pp. 133-254, 1996.
[24] Larry Ritchie, “Effect of cerebellar lesions on saccadic eye movements,” J. Neurophysiol. vol. 39, pp. 1246-1257, 1976.
[25] N. L. Port, M. A. Sommer , and R. H. Wurtz, “Multielectrode evidence for spreading activity across the superior colliculus movement map,” J. Neurophysiol. vol. 84, pp. 344-357, 2000.
[26] K. Arai, E. L. Keller and J. A. Edelman. “Two-dimensional neural network model of the primate saccadic system,” Neural Networks vol. 7, pp. 1115-1135, 1994.
[27] E. L. Keller , N. J. Gandhi, and S. V. Sekaran, “Activity in deep intermediate layer collicular neurons during interrupted saccades,” Exp. Brain Res. vol. 130, pp. 227-237, 2000.
[28] C. Lee, W. H. Rohrer, and D. L. Sparks, “Population coding of saccadic eye movements by neurons in the superior colliculus,” Nature vol. 332, pp. 357-360, 1988.
[29] J. E. Albano, M. Mishkin, L. E. Westbrook, and R. H. Wurtz, “Visuomotor deficits following ablation of monket superior colliculus,” J. Neurophysiol. vol. 48, pp. 338-351, 1982.
[30] B. Gaymard, S. Rivaud, and C. H. Pierrot-Deseilligny, “Role of the left and right supplementary motor area in memory-guided sequences,” Ann. Neurol. vol. 34, pp. 404-406, 1993.
[31] J. A. Sweeney, M. A. Mintun, S. Kwee, M. B. Wiseman, D. L. Brown, D. R. Rosenberg, and J. R. Carl, “Positron emission tomography study of voluntary saccadic eye movement and spatial working memory,” J. Neurophysiol. vol. 751, pp. 454-468, 1996.
[32] D. Guitton, H. A. Buchtel, and R. M. Douglas, “Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades,” Exp. Brain Res. vol. 58, pp. 455-472, 1985.
[33] J. S. Barton, A. Jama, and J. A. Sharpe, “Saccadic duration and intrasaccadic fatigue in myasthenic and nonmyasthenic ocular palsies,” Neurology vol. 45, pp. 2065-2072, 1995.
[34] M. Pare, and D. P. Munoz, “Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccades occurrence,” J. Neurophysiol. vol. 76, pp. 3666-3681, 1996.
[35] M. C. Dorris, M. Pare, and D. P. Munoz, “Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements,” J. Neurophysiol. vol. 17, pp. 8566-8579, 1997.
[36] J. Currie, B. Ramsden, C. McArthur, and P. Maruff, “Validation of a clinical antisaccadic eye movement test in the assessment of dementia,” Arch. Neurol. vol. 48, pp. 644-648, 1991.
[37] C. M. Harris, and D. M. Wolpert, “Signal-dependent noise determines motor planning,” Nature vol. 394, pp. 780-784, 1998.
[38] U. Buttner, and A. Straube, “The effect of cerebellar midline lesions on eye movements,” neuro-ophthalmology, vol. 15, no. 2, pp. 75-82, 1995.
[39] J. L. Krichmar, “A computational model of cerebellar saccadic control,” Revue. Neurologique. vol. 19, pp. 85-102, 1997.
[40] C. Evinger, C. R. S. Kaneko, and A. F. Fuchs. “Oblique saccadic eye movements of the cat.” Exp Brain Res vol. 41, pp. 370-379, 1987.
[41] C. M. Harris, “Does saccadic undershoot minimize saccadic flight-time? A Monte-Carlo study,” Vision Res. vol. 35, pp. 691-701, 1995.
[42] Philippe Lefevre, Christian Quaia, and Lance M. Optican, “Distributed model of control of saccades by superior colliculus and cerebellum,” Neural Networks vol. 11, pp. 1175-1190, 1988.
[43] Farrel R Robinson, “Role of the cerebellum in movement control and adaptation,” Current Opinion in Neurobiology vol. 5, pp. 755-726, 1995.
[44] C. M. Harris, “On the optimal control of behavior: a stochastic perspective,” J. Neurosci. Meth. vol. 83, pp. 73-88, 1998.
[45] H. Aizawa, and R. H. Wurtz, “Reversible inactivation of monkey superior colliculus. I. Curvature of saccadic trajectory,” J. Neurophysiol. vol. 79, pp. 2082-2096, 1998.
[46] K. Arai, S. Das, E. L. Keller, and E. Aiyoshi, “A distributed model of the saccadic system: simulation of temporally perturbed saccades using position and velocity feedback,” Neural Networks vol. 12, pp. 1359-1375, 1999.