| 研究生: |
張桔源 Chang, Chieh-Yuan |
|---|---|
| 論文名稱: |
藉由結構工程結合交聯與環烷設計優化聚醯亞胺之介電與電化學特性 Optimizing Dielectric and Electrochemical Properties of Polyimides by Structural Engineering Using Crosslinking and Alicyclic Designs |
| 指導教授: |
林彥丞
Lin, Yan-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 168 |
| 中文關鍵詞: | 聚醯亞胺 、交聯 、高頻介電材料 、區段共聚 、陽離子交換薄膜 、釩液流電池 |
| 外文關鍵詞: | polyimide polymers, crosslinking, high-frequency dielectric materials, block copolymerization, proton exchange membranes, vanadium redox flow batteries |
| 相關次數: | 點閱:17 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對兩類高性能高分子材料—聚醚醯亞胺(PEI)與磺化聚醯亞胺(SPI)薄膜,進行結構設計、功能調控與系統性性能評估,目標為開發適用於高頻電子與儲能應用的關鍵材料。針對PEI薄膜,採用後交聯策略,於聚合後進行甲醇脫除反應以建立穩定的三維網絡結構,有效兼顧前驅體的溶解性與薄膜的成型性。實驗結果顯示,BAPHF主鏈薄膜在1 mol%交聯條件下,不僅具備優異的熱穩定性(Td5% = 519 °C, CTE = 68 ppm/K)、機械剛性與光學透明性,亦於29–38 GHz頻段展現出極低的介電常數(2.52),為兼具多重性能的理想薄膜設計。在SPI薄膜部分,透過引入具剛性與非共平面結構的脂環二胺TCDDA,並與磺化二胺進行區段共聚,有效提升微相分離與自由體積比例,進而大幅降低釩離子通透率(9.79×10⁻⁸ cm²/min)並提高庫倫效率(CE > 90%)。T10膜更於實際VRFB電池測試中展現優異的能量效率與長期循環穩定性,顯示其卓越的選擇性與耐久性。綜上所述,本研究透過分子設計與交聯/共聚策略,成功開發出具備熱穩定性佳、結構完整、並具介電與離子選擇性的高功能性高分子薄膜,對於次世代電子與能源應用具有高度潛力。
This study focuses on the structural design, functional tuning, and systematic performance evaluation of two types of high-performance polymer materials—polyetherimide (PEI) and sulfonated polyimide (SPI) thin films—with the goal of developing key materials for high-frequency electronics and energy storage applications. For PEI films, a post-crosslinking strategy was adopted, in which methanol elimination reactions were conducted after polymerization to form stable three-dimensional networks. This approach effectively balances the solubility of the precursor with subsequent film processability. Experimental results show that the BAPHF-based PEI film with 1 mol% crosslinking exhibits an ideal combination of thermal stability, mechanical rigidity, optical transparency, and the lowest dielectric constant in the 29–38 GHz range. In the case of SPI films, the introduction of the rigid and non-coplanar alicyclic diamine TCDDA via segmental copolymerization enhanced microphase separation and increased free volume, significantly reducing vanadium ion permeability (9.79×10⁻⁸ cm²/min) and improving coulombic efficiency (CE > 90%). The T10 membrane also demonstrated excellent energy efficiency and long-term cycling stability in practical VRFB testing, indicating outstanding selectivity and durability. In summary, this study successfully developed functional polymer films with balanced thermal stability, structural integrity, and dielectric/ion-selective properties through molecular design and crosslinking/copolymerization strategies, offering significant potential for next-generation electronic devices and energy systems.
(1) Krowne, C. M. Physics, electrochemistry, chemistry, and electronics of the vanadium redox flow battery by analyzing all the governing equations. Phys Chem Chem Phys 2024, 26 (4), 2823-2862.
(2) Cao, Z.; Zhao, X.; Wang, D.; Chen, C.; Qu, C.; Liu, C.; Hou, X.; Li, L.; Zhu, G. Polymerization of poly-(amic acid) ammonium salt in aqueous solution and its use in flexible printed circuit boards. European Polymer Journal 2017, 96, 393-402.
(3) Zhao, N.; Platt, A.; Riley, H.; Qiao, R.; Neagu, R.; Shi, Z. Strategy towards high ion selectivity membranes for all-vanadium redox flow batteries. Journal of Energy Storage 2023, 72, 1-20.
(4) Han, S.; Li, Y.; Hao, F.; Zhou, H.; Qi, S.; Tian, G.; Wu, D. Ultra-low dielectric constant polyimides: Combined efforts of fluorination and micro-branched crosslink structure. European Polymer Journal 2021, 143, 110206.
(5) Ke, W.-C.; Lin, J.-W.; Busireddy, M. R.; Lee, Y.-H.; Chen, J.-T.; Hsu, C.-S. Enhancing the mechanical and dielectric properties of high thermally stable polyimides via a crosslinkable bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride monomer. Polymer 2024, 290, 126495.
(6) Pu, C.; Liu, F.; Xu, H.; Chen, G.; Tian, G.; Qi, S.; Wu, D. Molecular dynamics study on the mechanism of poly(amic acid) chemical structure on thermal imidization process and polyimide architecture. Materials Today Chemistry 2023, 33, 101679.
(7) Fang, Y.; He, X.; Kang, J.-C.; Wang, L.; Ding, T.-M.; Lu, X.; Zhang, S.-Y.; Lu, Q. Colorless transparent and thermally stable terphenyl polyimides with various small side groups for substrate application. European Polymer Journal 2024, 202, 112640.
(8) Bao, F.; Qiu, L.; Zou, B.; Lei, H.; Peng, W.; Cheng, S. Z. D.; Huang, M. Development of Fluorinated Colorless Polyimides of Restricted Dihedral Rotation toward Flexible Substrates with Thermal Robustness. Macromolecules 2024, 57 (8), 3568-3579.
(9) Ishii, J.; Takata, A.; Oami, Y.; Yokota, R.; Vladimirov, L.; Hasegawa, M. Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide films. European Polymer Journal 2010, 46 (4), 681-693.
(10) Sawada, R.; Ando, S. Colorless, Low Dielectric, and Optically Active Semialicyclic Polyimides Incorporating a Biobased Isosorbide Moiety in the Main Chain. Macromolecules 2022, 55 (15), 6787-6800.
(11) Dou, W.; Li, T.; Zhang, X.; He, A. Designs and recent progress of intrinsic low dielectric polyimide films. Progress in Organic Coatings 2024, 196, 108708.
(12) Zhang, Y.; Li, J.; Zhang, H.; Zhang, S.; Huang, X. Sulfonated polyimide membranes with different non-sulfonated diamines for vanadium redox battery applications. Electrochimica Acta 2014, 150, 114-122.
(13) Li, J.; Liu, S.; He, Z.; Zhou, Z. Semi-fluorinated sulfonated polyimide membranes with enhanced proton selectivity and stability for vanadium redox flow batteries. Electrochimica Acta 2016, 216, 320-331.
(14) Wang, L.; Yu, L.; Mu, D.; Yu, L.; Wang, L.; Xi, J. Acid-base membranes of imidazole-based sulfonated polyimides for vanadium flow batteries. Journal of Membrane Science 2018, 552, 167-176.
(15) Du, J.; Lin, H.; Zhang, L.; Wang, L. Advanced Materials for Vanadium Redox Flow Batteries: Major Obstacles and Optimization Strategies. Advanced Functional Materials 2025, 2501689.
(16) Hasegawa, M.; Ishigami, T.; Ishii, J.; Sugiura, K.; Fujii, M. Solution-processable transparent polyimides with low coefficients of thermal expansion and self-orientation behavior induced by solution casting. European Polymer Journal 2013, 49 (11), 3657-3672.
(17) Wu, M. H.; Chang, C. Y.; Liu, Y.; Chen, W. C.; Lin, Y. C. Impact of ring structure and conjugation on the dielectric properties of polyimides at a high frequency of 10–40 GHz. Journal of Polymer Science 2024, 62 (15), 3307-3319.
(18) Lian, M.; Lu, X.; Lu, Q. Synthesis of Superheat-Resistant Polyimides with High Tg and Low Coefficient of Thermal Expansion by Introduction of Strong Intermolecular Interaction. Macromolecules 2018, 51 (24), 10127-10135.
(19) Dong, X.; Wan, B.; Zha, J. W. Versatile Landscape of Low-k Polyimide: Theories, Synthesis, Synergistic Properties, and Industrial Integration. Chem Rev 2024, 124 (12), 7674-7711.
(20) Hasegawa, M. Development of Solution-Processable, Optically Transparent Polyimides with Ultra-Low Linear Coefficients of Thermal Expansion. Polymers (Basel) 2017, 9 (10), 520.
(21) Huang, Y. J.; Lin, J. W.; Lee, Y. H.; Busireddy, M. R.; Chen, J. T.; Hsu, C. S. Monomer ratio‐controlled polyimides with enhanced dielectric properties and thermal stabilities through crosslinking network. Journal of Polymer Science 2023, 62 (6), 1145-1155.
(22) Liu, M.; Song, J.; Qin, H.; Qin, S.; Zhang, Y.; Xia, W.; Xiong, C.; Liu, F. Significant Enhancement in Dielectric Properties of Polyimide Alloys Through a Two‐Phase Interlocking Structure. Advanced Functional Materials 2024, 34 (21), 2313258.
(23) Hasegawa, M.; Ichikawa, K.; Takahashi, S.; Ishii, J. Solution-Processable Colorless Polyimides Derived from Hydrogenated Pyromellitic Dianhydride: Strategies to Reduce the Coefficients of Thermal Expansion by Maximizing the Spontaneous Chain Orientation Behavior during Solution Casting. Polymers (Basel) 2022, 14 (6), 1131.
(24) Yang, C.-P.; Su, Y.-Y.; Guo, W.; Hsiao, S.-H. Synthesis and properties of novel fluorinated polynaphthalimides derived from 1,4,5,8-naphthalenetetracarboxylic dianhydride and trifluoromethyl-substituted aromatic bis(ether amine)s. European Polymer Journal 2009, 45 (3), 721-729.
(25) Chen, W.; Chen, W.; Zhang, B.; Yang, S.; Liu, C.-Y. Thermal imidization process of polyimide film: Interplay between solvent evaporation and imidization. Polymer 2017, 109, 205-215.
(26) Zhang, Q.; Li, X.; Dong, J.; Zhao, X. Chapter 6: High-performance polyimide fibers. Advanced Industrial and Engineering Polymer Research 2022, 5 (2), 107-116.
(27) Han, S. H.; Misdan, N.; Kim, S.; Doherty, C. M.; Hill, A. J.; Lee, Y. M. Thermally Rearranged (TR) Polybenzoxazole: Effects of Diverse Imidization Routes on Physical Properties and Gas Transport Behaviors. Macromolecules 2010, 43 (18), 7657-7667.
(28) Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science 2012, 37 (7), 907-974.
(29) Hasegawa, M.; Horiuchi, M.; Wada, Y. Polyimides Containing Trans-1,4-cyclohexane Unit (II). Low-K and Low-CTE Semi- and Wholly Cycloaliphatic Polyimides. High Performance Polymers 2007, 19 (2), 175-193.
(30) Ji, D.; Li, T.; Hu, W.; Fuchs, H. Recent Progress in Aromatic Polyimide Dielectrics for Organic Electronic Devices and Circuits. Adv Mater 2019, 31 (15), e1806070.
(31) Liu, X.-J.; Zheng, M.-S.; Chen, G.; Dang, Z.-M.; Zha, J.-W. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties. Energy & Environmental Science 2022, 15 (1), 56-81.
(32) Yuenyongsuwan, J.; Oh, J. H.; Kwon, Y. K. Porous polyimide composite films containing mesoporous hollow silica nanospheres with ultralow dielectric constant and dissipation loss. Polymer 2024, 313, 127694.
(33) Kuo, C.-C.; Lin, Y.-C.; Chen, Y.-C.; Wu, P.-H.; Ando, S.; Ueda, M.; Chen, W.-C. Correlating the Molecular Structure of Polyimides with the Dielectric Constant and Dissipation Factor at a High Frequency of 10 GHz. ACS Applied Polymer Materials 2020, 3 (1), 362-371.
(34) Fan, H.; Xie, T.; Wang, C.; Zhang, Y.; Pan, S.; Li, J.; Zhang, Y.; Guan, S.; Yao, H. Low-dielectric polyimide constructed by integrated strategy containing main-chain and crosslinking network engineering. Polymer 2023, 279, 126035.
(35) Li, Y.; Sun, G.; Zhou, Y.; Liu, G.; Wang, J.; Han, S. Progress in low dielectric polyimide film – A review. Progress in Organic Coatings 2022, 172, 107103.
(36) Simpson, J.; Clair, A. S. Fundamental insight on developing low dielectric constant polyimides. Thin Solid Films 1997, 308, 480-485.
(37) Luo, J.; Tong, H.; Mo, S.; Zhou, F.; Zuo, S.; Yin, C.; Xu, J.; Li, X. Integrated exploration of experimentation and molecular simulation in ester-containing polyimide dielectrics. RSC Adv 2023, 13 (2), 963-972.
(38) Zhou, H.; Lei, H.; Wang, J.; Qi, S.; Tian, G.; Wu, D. Breaking the mutual restraint between low permittivity and low thermal expansion in polyimide films via a branched crosslink structure. Polymer 2019, 162, 116-120.
(39) Zhuang, Y.; Seong, J. G.; Lee, Y. M. Polyimides containing aliphatic/alicyclic segments in the main chains. Progress in Polymer Science 2019, 92, 35-88.
(40) Chen, Y.-C.; Lin, Y.-C.; Chang, E.-C.; Kuo, C.-C.; Ueda, M.; Chen, W.-C. Investigation of the structure–dielectric relationship of polyimides with ultralow dielectric constant and dissipation factors using density functional theory. Polymer 2022, 256, 125184.
(41) Zhang, Y.; Huang, S.; Lv, X.; Wang, K.; Yin, H.; Qiu, S.; Li, J.; Zhang, G.; Sun, R. Polyimides with low dielectric constants and dissipation factors at high frequency derived from novel aromatic diamines with bistrifluoromethyl pendant groups. Polymer Chemistry 2023, 14 (33), 3862-3871.
(42) Yin, Y.; Yamada, O.; Tanaka, K.; Okamoto, K.-I. On the Development of Naphthalene-Based Sulfonated Polyimide Membranes for Fuel Cell Applications. Polymer Journal 2006, 38 (3), 197-219.
(43) Bei, R.; Chen, K.; He, Y.; Li, C.; Chi, Z.; Liu, S.; Xu, J.; Zhang, Y. A systematic study of the relationship between the high-frequency dielectric dissipation factor and water adsorption of polyimide films. Journal of Materials Chemistry C 2023, 11 (30), 10274-10281.
(44) Hu, R.; Chen, Y.; Zhang, C.; Jiang, S.; Hou, H.; Duan, G. Porous monoliths from polyimide: Synthesis, modifications and applications. Progress in Materials Science 2024, 144, 101284.
(45) Zheng, H.; Gong, D.; Pang, Y.; Tian, C.; Wang, Z.; Yan, J. Synthesis and properties of poly(ester imide) copolymers from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride, 2,2′‐bis(trifluoromethyl)benzidine, and 4‐aminophenyl‐4′‐aminobenzoate. Journal of Applied Polymer Science 2024, 141 (14), e55182.
(46) Lin, J.-W.; Chao, T.-C.; Busireddy, M. R.; Chen, J.-T.; Hsu, C.-S. Green Approaches in Manufacturing Polyimides: From Eugenol-Based Monomers to Cross-Linked Polyimides with Low Dielectric Properties Utilizing γ-Valerolactone as the Solvent. ACS Sustainable Chemistry & Engineering 2024, 12 (37), 14009-14017.
(47) Lin, J.-W.; Huang, Y.-J.; Busireddy, M. R.; Chen, J.-T.; Hsu, C.-S. Colorless Poly(amide-imide)s with Low Dielectric Constants and Enhanced Mechanical Properties through Tri-Armed Cross-Linkers. ACS Applied Polymer Materials 2024, 6 (2), 1294-1301.
(48) Zhang, C.; He, X.; Lu, Q. Polyimide films with ultralow dielectric loss for 5G applications: Influence and mechanism of ester groups in molecular chains. European Polymer Journal 2023, 200, 112544.
(49) Kahraman, H.; Akın, Y. Recent studies on proton exchange membrane fuel cell components, review of the literature. Energy Conversion and Management 2024, 304, 118244.
(50) Luo, Y.; Li, X.; Zhang, X.; Liu, J.; Deng, X. Plasma Technology Applications in Proton Exchange Membrane Fuel Cell Systems. ChemCatChem 2024, 16 (4), e202301372.
(51) Ahmed, S.; Beauger, C.; Zada, A.; Iqbal, W.; Ahmed, N.; Anwar, M. T.; Hassan, M. Recent advancements in designing high-performance proton exchange membrane fuel cells: A comprehensive review. Applied Energy 2025, 390, 125753.
(52) Asghar, M. R.; Zahid, A.; Su, H.; Divya, K.; Anwar, M. T.; Xu, Q. Styrene and Its Derivatives Used in Proton Exchange Membranes and Anion Exchange Membranes for Fuel Cell Applications: A Review. Batteries 2025, 11 (4), 134.
(53) Qiu, C.; Xu, Z.; Chen, F.-Y.; Wang, H. Anode Engineering for Proton Exchange Membrane Water Electrolyzers. ACS Catalysis 2024, 14 (2), 921-954.
(54) Shi, Y.; Eze, C.; Xiong, B.; He, W.; Zhang, H.; Lim, T. M.; Ukil, A.; Zhao, J. Recent development of membrane for vanadium redox flow battery applications: A review. Applied Energy 2019, 238, 202-224.
(55) Amiri, H.; Khosravi, M.; Ejeian, M.; Razmjou, A. Designing Ion‐Selective Membranes for Vanadium Redox Flow Batteries. Advanced Materials Technologies 2021, 6 (10), e2001308.
(56) Sharma, J.; Kulshrestha, V. Advancements in polyelectrolyte membrane designs for vanadium redox flow battery (VRFB). Results in Chemistry 2023, 5, 100892.
(57) Ye, J.; Xia, L.; Li, H.; de Arquer, F. P. G.; Wang, H. The Critical Analysis of Membranes toward Sustainable and Efficient Vanadium Redox Flow Batteries. Adv Mater 2024, 36 (28), e2402090.
(58) Schwenzer, B.; Zhang, J.; Kim, S.; Li, L.; Liu, J.; Yang, Z. Membrane development for vanadium redox flow batteries. ChemSusChem 2011, 4 (10), 1388-1406.
(59) Otake, K. I.; Kitagawa, H. Control of Proton-Conductive Behavior with Nanoenvironment within Metal-Organic Materials. Small 2021, 17 (22), e2006189.
(60) Fang, J.-H. Polyimide Proton Exchange Membranes. In Advanced Polyimide Materials, 2018; pp 323-383.
(61) Scherer, G. G. Fuel cells I; Springer Science & Business Media, 2008.
(62) Ghosh, A.; Banerjee, S. Sulfonated fluorinated-aromatic polymers as proton exchange membranes. e-Polymers 2014, 14 (4), 227-257.
(63) Yang, X.-B.; Zhao, L.; Goh, K.; Sui, X.-L.; Meng, L.-H.; Wang, Z.-B. A phosphotungstic acid coupled silica-Nafion composite membrane with significantly enhanced ion selectivity for vanadium redox flow battery. Journal of Energy Chemistry 2020, 41, 177-184.
(64) Choi, C.; Kim, S.; Kim, R.; Choi, Y.; Kim, S.; Jung, H.-y.; Yang, J. H.; Kim, H.-T. A review of vanadium electrolytes for vanadium redox flow batteries. Renewable and Sustainable Energy Reviews 2017, 69, 263-274.
(65) Li, Z.; He, H.; Zhai, L.; Guo, H.; Li, X.; Li, T.; He, S.; Chai, S.; Usenko, A.; Li, H. Nafion Hybrid Membranes with Enhanced Ion Selectivity via Supramolecular Complexation for Vanadium Redox Flow Batteries. ACS Applied Polymer Materials 2025, 7 (3), 2152-2159.
(66) Minke, C.; Kunz, U.; Turek, T. Techno-economic assessment of novel vanadium redox flow batteries with large-area cells. Journal of Power Sources 2017, 361, 105-114.
(67) Yamazaki, K.; Tang, Y.; Kawakami, H. Proton conductivity and stability of low-IEC sulfonated block copolyimide membrane. Journal of Membrane Science 2010, 362 (1-2), 234-240.
(68) Wang, X.; Guo, M.; Ban, T.; Wang, Y.; Ma, J.; Wang, Z.; Jiang, Z.; Zhu, X. A long-side-chain sulfonated ether-free copolybenzimidazole membrane containing alicyclic structure for vanadium redox flow batteries. Solid State Ionics 2024, 413, 116601.
(69) Yu, Y.; Wang, G.; Jing, Y.; Wei, S.; Li, X.; Zhang, S.; Chen, J.; Zhou, Y.; Zhang, J.; Chen, J.; et al. A sulfonated polyimide containing imidazole ring with a low vanadium ion permeable for vanadium redox flow battery. Polymer 2024, 302, 127100.
(70) Cheng, Y.-C.; Chen, Y.-C.; Lin, Y.-C.; Kuo, C.-C.; Chen, W.-C. Exploring the Cross-Linking Effect on Decreasing the Dielectric Constant and Dissipation Factor of Poly(ester imide)s at a High Frequency of 10–40 GHz. ACS Applied Polymer Materials 2023, 5 (10), 7907-7917.