簡易檢索 / 詳目顯示

研究生: 陳韻羽
Chen, Yun-Yu
論文名稱: 以電化學方法吸附染料及染料共敏化法促進染料敏化太陽能電池之效能
Performance Enhancements of Dye-sensitized Solar Cells by Electrochemical Adsorption and Co-sensitization of Dyes
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 109
中文關鍵詞: 染料敏化太陽能電池電化學吸附共敏化
外文關鍵詞: Dye-sensitizated solar cells, Electrochemical adsorption, Co-sensitization
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩部份,第一部份是以電化學方法來增進染料的吸附,第二部分是利用具吸光互補性的染料(SQ2及TY6)作為敏化劑,藉其共敏化效應來增進染料敏化太陽能電池(DSSC)在室內光環境之效能。
    在電化學吸附的研究上,施加恆電位於TiO2光電極,藉此一電位的作用力,促使N719染料快速的吸附至TiO2光電極上。研究中調控施加的電位與吸附時間,藉其來優化電池的光電轉換效率。實驗結果顯示,提高電極的施加電位,會有較大的電流密度,加速染料的吸附速度。而延長吸附時間會增加染料的吸附量,提高元件的光電流。實驗結果顯示,施加3V的電位並吸附60分鐘時,電池有最佳的光電轉換效率,其在標準太陽光下可達8.28%,與利用傳統長時間浸泡吸附電池的效率(8.31%)相當。然而,當施予過高的電位或是過長的吸附時間,電池的光電轉換效率會下降,主要是光電極上電荷的再結合阻力下降,導致元件開路電壓與短路電流變小所造成。推測其原因為過強的驅動力或過長的吸附時間,染料會在主動層外側產生堆疊,且染料無法滲入內層吸附,完整覆蓋TiO2表面所造成。若將電池元件於50oC高溫環境下進行穩定性測試,發現以電化學方法製備之元件穩定度佳,在經過500小時後仍可維持82%之初始效率。
    在第二部份,TY6主要用於室內光敏化的有機染料,其高開路電壓之特性,使元件表現優於以往使用的N719釕金屬染料。然而,TY6染料的吸光特性與T5螢光燈管匹配性較差,故光電流密度較低,效率提升幅度不明顯,所以本研究以具有吸光互補性的染料(SQ2及TY6)作為共敏化劑。實驗結果顯示,當染料溶液中SQ2/TY6濃度比為3/7時,光電極具有較寬的吸光範圍,因此光電流提升,元件的光電轉換效率可達16.32%,優於單獨由TY6(15.03%)及N719(14.66%)染料敏化電池的效率。

    This study utilized two methods to improve the performane of dye-sensitized solar cell (DSSCs). In the study of electrochemical adsorption, a constant electric potential is applied to the TiO2 photoelectrode and, by which, exerting a force for the adsorption of the N719 dye onto the TiO2 photoelectrode. The experimental results show that increasing the applied potential of the electrode will accelerate the dye adsorption rate and prolonging the adsorption time increases the adsorption amount of dye and the photocurrent of the device. It also demonstrates that the best performance of the cell (8.28%) is achieved by controlling a potential of 3V for 60 minutes, and comparable to commonly utilized spontaneous adsorption (8.31%). However, if the applied potential or adsorption time is over the optimal value, the cell efficiency decreases, mainly due to the reduction in the charge recombination resistance at the photoelectrode/electrolyte interface. The result is ascribed to the aggregation and stacking of dye which obstructs the penetration of dye to the inner part of the photoelectrode.
    In the second part, TY6 is used as the main dye for indoor-light application of DSSCs. TY6 has an advantage of high open circuit voltage, but its light absorption range is not wide enough. Therefore, the SQ2 dye, which has a complementary light absorption property to the TY6, is used as co-sensitizers. The highest cell efficiency is obtained at the SQ2/TY6 concentration ratio of 3/7 which achieve an efficiency of 16.32%, which is higher than those achieved by using TY6(15.03%) and N719(14.66%).

    摘要 I Extended abstract II 目錄 XV 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1-1 前言 1 1-2 研究目的與動機 3 第二章 實驗原理與文獻回顧 5 2-1 染料敏化太陽能電池介紹 5 2-1-1 工作原理 6 2-1-2 電子在DSSC上的傳輸路徑 7 2-2 染料敏化太陽能電池之結構介紹 9 2-2-1 導電基板 10 2-2-2 氧化物半導體 11 2-2-3 光敏化劑 13 2-2-4 電解質 20 2-2-5 對電極 24 2-3 文獻回顧 26 2-3-1 染料吸附程序 26 2-3-2 染料敏化太陽能電池於低照度光源下之應用 27 2-3-3 有機型染料之發展 28 2-3-4 共敏化劑之應用 29 第三章 實驗器材與步驟 31 3-1 實驗藥品與材料 31 3-2 儀器原理與分析 33 3-2-1 太陽光模擬器 33 3-2-2 電化學交流阻抗分析 37 3-2-3 入射光子轉換效率量測系統 43 3-2-4 循環伏安儀 44 3-2-5 金屬濺鍍機 46 3-2-6 可見光-紫外光光譜儀 47 3-2-7 室內光量測系統 47 3-2-8 一般儀器 49 3-3 實驗流程及實驗原理 51 3-3-1 二氧化鈦薄膜製備 51 3-3-2 光電極敏化程序 52 3-3-3 對電極製備程序 53 3-3-4 電解質製備程序 53 3-3-5 染料敏化太陽能電池元件組裝 54 第四章 結果與討論 56 4-1 利用電化學方法吸附染料製備元件 56 4-1-1 施予電位的選擇 56 4-1-2 施予電位對元件表現之效應 57 4-1-3 吸附時間對元件表現之效應 59 4-1-4 吸附方式對元件光電流影響之探討 61 4-1-4-1 染料於光電極薄膜吸附程度之比較 62 4-1-4-2 電化學法對染料吸附上之限制 63 4-1-5電池元件之阻抗特性分析 66 4-1-5-1 施予電位於電池元件之阻抗特性分析 68 4-1-5-2 吸附時間於電池元件之阻抗特性分析 69 4-1-6 以滲透實驗分析電化學吸附法 72 4-1-7 電化學方法對染料吸附速度之探討 73 4-1-8染料吸附於光電極之示意圖 75 4-1-9 元件穩定性測試 78 4-2 電化學吸附之應用性 80 4-2-1 染敏太陽能電池於室內光環境之應用 80 4-2-2 電化學吸附法於室內光下之元件表現 81 4-2-3 吸附時間對元件表現之效應 83 4-2-4 施予不同電位與吸附時間於電池元件之阻抗特性分析 84 4-2-4-1 施予不同電位於電池元件之阻抗特性分析 85 4-2-4-2 吸附時間於電池元件之阻抗特性分析 86 4-3 SQ2/TY6染料共敏化於室內光環境下之應用 89 4-3-1 染料對元件於室內光源表現之比較 89 4-3-2共敏溶液於可見光範圍之吸收表現 91 4-3-3 共敏化劑對DSSC元件效能之影響 92 4-3-4 共敏化電池元件之阻抗特性分析 94 第五章 結論與建議 98 5-1 結論 98 5-2 未來工作與建議 100 第六章 參考文獻 102

    [1] H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye Sensitized Zinc Oxide: Aqueous Electrolyte: Platinum Photocell," Nature, vol. 261, pp. 402-403, 1976.
    [2] B. O’Regan and M. Grätzel, "A Low-cost, High-efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films," Nature, vol. 353, pp. 737-739, 1991.
    [3] Mian-En Yeoh, Kah-Yoong Chan, "Recent advances in photo-anode for dye-sensitized solarcells a review," Int. J. Energy Res., vol. 41, pp. 2446-2467, 2017.
    [4] M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, no. 1-3, pp. 3-14, 2004.
    [5] M. Grätzel, "Solar energy conversion by dye-sensitized photovoltaic cells," Inorganic chemistry, vol. 44, pp. 6841-6851, 2005.
    [6] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, "Dye-Sensitized Solar Cells," Chemical Reviews, vol. 110, pp. 6595-6663, 2010.
    [7] Y.-Y. Kuo and C.-H. Chien, "Sinter-free transferring of anodized TiO2 nanotube-array onto a flexible and transparent sheet for dye-sensitized solar cells," Electrochimica Acta, vol. 91, pp. 337-343, 2013.
    [8] H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, and Y. B. Cheng, "Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 213, no. 1, pp. 30-36, 2010.
    [9] S. Ito, N. C. Ha, G. Rothenberger., P. Liska, P. Comte, S. M. Zakeeruddin, P. Péchy, M. K. Nazeeruddin and M. Grätzel, "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode," Chem Commun (Camb), no. 38, pp. 4004-6, Oct 14 2006.
    [10] M. Grätzel, "Photoelectrochemical Cells.," Nature, vol. 414, pp. 338-344, 2001.
    [11] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, "Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications," Nano Letter, vol. 8, pp. 3781-3786, 2008.
    [12] J. Jiu, S. Isoda, F. Wang, and M. Adachi, "Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film," The Journal of Physical Chemistry B, vol. 110, pp. 2087-2092, 2006.
    [13] W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells," Journal of Applied Physics, vol. 32, pp. 510-519, 1961.
    [14] A. Hagfeldt and M. Grätzel, "Molecular Photovoltaics," Accounts of Chemical Research, vol. 33, no. 5, pp. 269-277, 2000.
    [15] M. K. Nazeeruddin et al., "Conversion of Light to Electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes," Journal of the American Chemical Society, vol. 115, pp. 6382-6390, 1993.
    [16] M. K. Nazeeruddin, P. Péchy, and M. Grätzel, "Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a Trithiocyanato–Ruthenium Complex," Chemical Communications, vol. 18, pp. 1705-1706, 1997.
    [17] M. K. Nazeeruddin et al., "Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers," Journal of American Chemical Society, vol. 127, pp. 16835-16847, 2005.
    [18] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, "A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells," Journal of American Chemical Society, vol. 127, pp. 808-809, 2004.
    [19] C.-Y. Chen et al., "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells," ACS nano, vol. 3, no. 10, pp. 3103-3109, 2009.
    [20] Q. Yu et al., "High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states," ACS nano, vol. 4, no. 10, pp. 6032-6038, 2010.
    [21] T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. Diau, and M. Grätzel, "Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins," Angew Chem Int Ed Engl, vol. 49, no. 37, pp. 6646-9, Sep 3 2010.
    [22] A. Yella et al., "Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency," science, vol. 334, no. 6056, pp. 629-634, 2011.
    [23] S. Mathew et al., "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers," Nat Chem, vol. 6, no. 3, pp. 242-7, Mar 2014.
    [24] S. Ito et al., "High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness," Advanced Materials, vol. 18, no. 9, pp. 1202-1205, 2006.
    [25] S. Ito et al., "High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye," Chem Commun (Camb), no. 41, pp. 5194-6, Nov 7 2008.
    [26] G. Zhang et al., "High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary pi-conjugated spacer," Chem Commun (Camb), no. 16, pp. 2198-200, Apr 28 2009.
    [27] W. Zeng et al., "Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks," Chemistry of Materials, vol. 22, no. 5, pp. 1915-1925, 2010.
    [28] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chem Commun (Camb), vol. 51, no. 88, pp. 15894-7, Nov 14 2015.
    [29] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells," Solar energy materials and solar cells, vol. 70, no. 1, pp. 85-101, 2001.
    [30] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, "Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): the case of solar cells using the I-/I3-redox couple," The Journal of Physical Chemistry B, vol. 109, no. 8, pp. 3480-3487, 2005.
    [31] R. Harikisun and H. Desilvestro, "Long-term stability of dye solar cells," Solar Energy, vol. 85, no. 6, pp. 1179-1188, 2011.
    [32] P. Balraju, P. Suresh, M. Kumar, M. S. Roy, and G. D. Sharma, "Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye," Journal of Photochemistry and Photobiology A: Chemistry, vol. 206, no. 1, pp. 53-63, 2009.
    [33] T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, "Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells," Nano letters, vol. 2, no. 11, pp. 1259-1261, 2002.
    [34] H. Greijer Agrell, J. Lindgren, and A. Hagfeldt, "Coordinative interactions in a dye-sensitized solar cell," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, no. 1-3, pp. 23-27, 2004.
    [35] T. W. Hamann, "The end of iodide? Cobalt complex redox shuttles in DSSCs," Dalton Transactions, vol. 41, no. 11, pp. 3111-3115, 2012.
    [36] S. M. Feldt, G. Wang, G. Boschloo, and A. Hagfeldt, "Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couples," The Journal of Physical Chemistry C, vol. 115, no. 43, pp. 21500-21507, 2011.
    [37] Y.-L. Lee, C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu, and C.-F. Chi, "A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells," Electrochemistry Communications, vol. 12, no. 11, pp. 1662-1665, 2010.
    [38] L.-L. Li, C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu, and E. Wei-Guang Diau, "Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells," Journal of Materials Chemistry, vol. 22, no. 13, p. 6267, 2012.
    [39] E. Olsen, G. Hagen, and S. E. Lindquist, "Dissolution of platinum in methoxy propionitrile containing LiI/I2," Solar Energy Materials and Solar Cells, vol. 63, no. 3, pp. 267-273, 2000.
    [40] T. N. Murakami et al., "Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes," Journal of The Electrochemical Society, vol. 153, no. 12, p. A2255, 2006.
    [41] K.-C. Huang et al., "A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode," Journal of Materials Chemistry, vol. 20, no. 20, p. 4067, 2010.
    [42] L. Kavan, J. H. Yum, and M. Grätzel, "Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets," Acs Nano, vol. 5, no. 1, pp. 165-172, 2010.
    [43] J. M. Pringle, V. Armel, and D. R. MacFarlane, "Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells," Chem. Commun., vol. 46, no. 29, pp. 5367-5369, 2010.
    [44] Khalil Ebrahim Jasim, Solar Cells - Dye-Sensitized Devices, InTech, Croatia, 2011, "Dye Sensitized Solar Cells - Working Principles, Challenges and Opportunities,".
    [45] Shuji Noda, Kazuhide Nagano, Eiji Inoue, Toshio Egi, Takeshi Nakashima, Naoto Imawaka, Masahiro Kanayama, Shiro Iwata, Kunihiro Toshima, Keiko Nakada, Katsumi Yoshino, "Development of large size dye-sensitized solar cell modules with high temperature durability," Synthetic Metals, vol. 159, pp. 2355-2357, 2009.
    [46] Md. K. Nazeeruddin, R. Splivallo, P. Liska, P. Comte and M. Grätzel, " A swift dye uptake procedure for dye sensitized solar cells," Chem Commun (Camb), vol. 21, no. 12, pp. 1456-7, Jun 2003.
    [47] Hsiu-Po Kuo, Chun-Te Wu, "Speed up dye-sensitized solar cell fabrication by rapid dye solution droplets bombardment," SOL ENERG MAT SOL C, vol. 120, pp. 81-86, 2014.
    [48] Y. Ogomi, Y. Kashiwa, Y. Noma, Y. Fujita, S. Kojima, M. Kono, Y. Yamaguchi, S. Hayase, "Photovoltaic performance of dye-sensitized solar cells stained with black dye under pressurized condition and mechanism for high efficiency," SOL ENERG MAT SOL C, vol. 93, pp. 1009-1012, Sep 22 2009.
    [49] Xiuting Luo, Ji Hoon Kim, Ji Young Ahn, Dongyun Lee, Jong Man Kim, Dong Geun Lee, Soo Hyung Kim, "Electrospraying-assisted rapid dye molecule uptake on the surfaces of TiO2 nanoparticles for speeding up dye-sensitized solar cell fabrication," SOL ENERG MAT SOL C, vol. 144, pp. 411-417, 2016.
    [50] Nagarajan Sridhar and Dave Freeman, "A study of dye sensitized solar cells under indoor and low level outdoor lighting comparison to organic and inorganic thin film solar cells and methods to address maximum power point tracking," Mater Sci, 2011.
    [51] Chin-Li Wang, Pao-Tsen Lin, Yi-Fen Wang, Chiung-Wen Chang, Bo-Zhi Lin, Hshin-Hui Kuo, Cheng-Wei Hsu, Shih-Hung Tu, and Ching-Yao Lin, "Cost-effective anthryl dyes for dye-sensitized cells under one sun and dim light," J. Phys. Chem. C, vol. 119, no. 43, pp. 24282-24289, 2015.
    [52] Francesca De Rossi, Tadeo Pontecorvo, Thomas M. Brown, "Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting," Appl Energy, vol. 156, pp. 413-422, 2015.
    [53] Marina Freitag, Joël Teuscher, Yasemin Saygili, Xiaoyu Zhang, Fabrizio Giordano, Paul Liska, Jianli Hua, Shaik M. Zakeeruddin, Jacques-E. Moser, Michael Grätzel, Anders Hagfeldt, "Dye-sensitized solar cells for efficient power generation under ambient lighting," Nature, vol. 11, pp. 372-377, 2017.
    [54] Anders Hagfeldt, Gerrit Boschloo, Licheng Sun, Lars Kloo, and Henrik Pettersson, "Dye-Sensitized Solar Cells," Chem. Rev., vol. 110, pp. 6595-6663, 2010.
    [55] Jia-Wei Shiu, Yen-Cheng Chang, Chien-Yi Chan, Hui-Ping Wu, Hung-Yu Hsu, Chin-Li Wang, Ching-Yao Lin and Eric Wei-Guang Diau, "Panchromatic co-sensitization of porphyrin- sensitized solar cells to harvest near-infrared light beyond 900 nm," J. Mater. Chem. A, vol. 3, pp. 1417-1420, 2015.
    [56] Hui-Ping Wu, Zih-Wei Ou, Tsung-Yu Pan, Chi-Ming Lan, Wei-Kai Huang, Hsuan-Wei Lee, N. Masi Reddy, Chien-Tien Chen, Wei-Shan Chao, Chen-Yu Yeh and Eric Wei-Guang Diau, "Molecular engineering of cocktail co-sensitization for efficient panchromatic porphyrin-sensitized solar cells," Energy Environ. Sci., vol. 5, pp. 9843-9848, 2012.
    [57] Tian Lan, Xuefeng Lu, Lu Zhang, Yijing Chen, Gang Zhou, Zhong-Sheng Wang, "Enhanced performance of quasi-solid-state dye- sensitized solar cells by tuning the building blocks in D–(π)-A’-π-A featured organic dyes," J. Mater. Chem. A, vol. 3, pp. 9869-9881, 2015.
    [58] Weihong Zhu, Yongzhen Wu, Shutao Wang, Wenqin Li, Xin Li, Jian Chen, Zhong-sheng Wang, He Tian, "Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response,"Adv. Funct. Mater., vol. 21, pp. 756-763, 2011.
    [59] Kenji Kakiage, Yohei Aoyama, Toru Yano, Keiji Oya, Jun-ichi Fujisawa, Minoru Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chem. Commun., vol. 51, pp. 15894-15897, 2015.
    [60] Yongzhen Wu, Wei-Hong Zhu, Shaik M. Zakeeruddin, Michael Graẗzel, "Insight into D-A-π-A Structured Sensitizers: A Promising Route to Highly Efficient and Stable Dye-Sensitized Solar Cells," ACS Appl. Mater. Interfaces, vol. 7, pp. 9307-9318.
    [61] Yongzhen Wu, Magdalena Marszalek, Shaik M. Zakeeruddin, Qiong Zhang, He Tian, Michael Graẗzel, Weihong Zhu, "High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D-A-π-A featured organic indoline dyes," Energy Environ. Sci., vol. 5, pp. 8261-8272, 2012.
    [62] Yogesh S. Tingare, Ming-Tai Shen, Chaochin Su, Shih-Yu Ho, Sheng-Han Tsai, Bo-Ren Chen, Wen-Ren Li, "Novel Oxindole Based Sensitizers: Synthesis and Application in Dye-Sensitized Solar Cells," Org. Lett., vol. 15, no. 17, pp. 4292-4295, 2013.
    [63] Zhaoyang Yao, Min Zhang, Heng Wu, Lin Yang, Renzhi Li, Peng Wang, "Donor/Acceptor Indenoperylene Dye for Highly Efficient Organic Dye-Sensitized Solar Cells," J. Am. Chem. Soc., vol. 137, pp. 3799-3802, 2015.
    [64] Yogesh S. Tingare, Nguyê ̃n So’n Vinh, Hsien-Hsin Chou, Yu-Chieh Liu, Yean-San Long, Teng-Chun Wu, Tzu-Chien Wei, Chen-Yu Yeh, "New Acetylene-Bridged 9,10-Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dye-Sensitized Solar Cells," Adv. Energy Mater., vol. 7, pp. 1700032, 2017.
    [65] Liguo Wei, Yulin Yang, Ruiqing Fan, Ping Wang, Liang Li, Jia Yu, Bin Yang, Wenwu Cao, "Enhance the performance of dye-sensitized solar cells by co-sensitization of 2,6-bis(iminoalkyl)pyridine and N719," RSC Adv., vol. 3, pp. 25908-25916, 2013.
    [66] Zhisheng Wu, Yinni Wei, Zhongwei An, Xinbing Chen, Pei Chen, "Co-sensitization of N719 with an Organic Dye for Dye-sensitized Solar Cells Application," Chem. Soc., vol. 35, no.5, pp. 1449-1454, 2014.
    [67] Luhua Dong, Zhiwei Zheng, Youfu Wang, Xing Li, Jianli Hua, Aiguo Hu, "Co-sensitization of N719 with polyphenylenes from the Bergman cyclization of maleimide-based enediynes for dye-sensitized solar cells," J. Mater. Chem. A, vol. 3, pp. 11607-11614, 2015.
    [68] Weiwei Zhang, Wenqin Li, Yongzhen Wu, Jingchuan Liu, Xiongrong Song, He Tian, Wei-Hong Zhu, "Novel Squaraine Cosensitization System of Panchromatic Light- Harvesting with Synergistic Effect for Highly Efficient Solar Cells," ACS Sustainable Chem. Eng., vol. 4, pp. 3567-3574, 2016.
    [69] A. Hauch and A. Georg, "Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells," Electrochimica Acta, vol. 46, no. 22, pp. 3457-3466, 2001.
    [70] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, "Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy," The Journal of Physical Chemistry B, vol. 110, no. 28, pp. 13872-13880, 2006.
    [71] W. N. Hung, "Development of printable electrolytes for dye-sensitized solar cells and its application on different lighting conditions," Master thesis, National Cheng Kung University, 2016.

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE