簡易檢索 / 詳目顯示

研究生: 張晉銓
Chang, Chin-Chuan
論文名稱: 利用座標轉換法來模擬熱流傳播方向的操控
Controlling the Flow of Heat with the Method of Coordinate Transformation
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: 轉換材料屏蔽裝置集中器旋轉器熱傳方程式
外文關鍵詞: transformation media, cloak, concentrator, rotator, heat equation
相關次數: 點閱:165下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在2006年,在國際知名期刊Science 之兩篇開創性文章 Pendry et al. (2006)及 Leonhardt (2006),在電磁波理論中提出利用座標轉換的概念實現屏蔽效應,在短短幾年的時間裡引起各界學者熱烈的討論,從電磁波到光學、聲學、應力波、熱傳學,只要能夠維持控制方程式的不變性,能量傳播的控制在各個領域都有廣大的發展空間。熱是與我們生活息息相關的議題,對熱流的操控是工程應用上重要且實際的課題,文章中將以座標轉換的方法探討如何控制熱的流動達到我們想要的效果。本文之特色為在座標轉換之計算過程當中,利用特別的方法可以先決定材料係數之間的關係,再來反推座標轉換方程式,此法將為日後屏蔽裝置之發展建立新的基礎,其次本文將針對三維及二維的屏蔽裝置、旋轉器、集中器做詳細的模擬與探討,並詳細計算三者在各個情況下材料係數之解析解且驗證在三維下三者的材料係數以及在三維空間中的傳遞效果。本文亦對屏蔽裝置、旋轉器、集中器分別做了穩態及暫態數值模擬,並利用符合實際的尺寸與材料參數,詳細分析及探討三者在暫態及穩態中的詳細情況及變化,以利未來在工程上之應用,並期許能將其應用落實於生活當中。

    we explore the possibility to control the flow of heat flux with the method of coordinate transformation. Three results are presented in this study. First, we derive the transformed heat conductivity tensor together with the transformed heat capacity in terms of transformation fuction. Second, we derive the analytical form for the material parameters of thermal cloak, concentrator, and rotator for transient and steady state in two and three dimensions. We also verify their correctness using the finite element method. Third, we simulate the performance of each device by using COMSOL and discuss their results in detail. By examining the distribution of streamline and isothermal line, we find good simulation performance.

    目錄 中文摘要 i Abstract ii 誌謝 vi 目錄 vii 符號表 ix 圖目錄 xi 表目錄 xiii 第一章 緒論 1 1.1文獻回顧及相關研究 1 1.2論文內容簡介 7 第二章 熱傳導的基本理論與概念 8 2.1熱傳導的基本概念 8 2.2與熱有關的物理量與常用材料 9 2.3熱傳方程式性質介紹 12 第三章 柱座標下熱傳方程式的座標轉換及模擬 14 3.1熱傳方程式在柱座標之座標轉換 14 3.2柱座標圓形屏蔽效應數值模擬 24 3.3柱座標橢圓形屏蔽效應數值模擬 29 3.4柱座標圓形集中器數值模擬 34 第四章 球座標下熱傳方程式的座標轉換及模擬 39 4.1熱傳方程式在球座標之座標轉換 39 4.2球座標球型屏蔽效應數值模擬及驗證 47 4.3球座標椭球型屏蔽效應數值模擬及驗證 51 4.4球座標球型集中器數值模擬及驗證 56 第五章 熱傳方程式之旋轉場模擬 59 5.1熱傳方程式在柱座標之座標轉換 59 5.2熱傳方程式在球座標之座標轉換 64 5.3 柱座標旋轉場之數值模擬及驗證 69 5.4 三維球座標旋轉場之數值模擬及驗證 73 第六章 結論與未來展望 80 參考文獻 82 附錄A 基本熱傳導公式推導 87

    Cai, L.-W. and Sánchez-Dehesa, J., Analysis of Cummer-Schurig acoustic cloaking, New Journal of Physics 9, 450 (2007).

    Cai, W. S., Chettiar, U. K., Kildishev, A. V. and Shalaev, V. M., Optical cloaking
    with metamaterials, Nature Photon 1, 224–227 (2007).

    Chen, H. and Chan, C. T., Acoustic cloaking in three dimensions using acoustic metamaterials , Appl. Phys. Lett. 91, 183518 (2007a).

    Chen, H. and Chan, C. T., Transformation media that rotate electromagnetic fields, Appl. Phys. Lett. 90, 241105 (2007b).

    Chen, H. and Chan, C. T., Electromagnetic wave manipulation by latered systems using the transformation media concept, Phy. Rev. 78, 054204 (2008).

    Chen, T. and Tsai, Y. L., A derivation for the acoustic material parameters in transformation domains, Journal of Sound and Vibration 332, 766-779 (2013).

    Chen, T. and Weng, C. N., Invisibility cloak with a twin cavity, Opt. Express, 17, 10, 8614-8620 (2009).

    Chen, T., Weng, C. N., and Chen, J. S., Cloak for curvilinearly anisotropic media in conduction, Appl. Phys. Lett. 93,114103 (2008).

    Cummer, S. A., Popa, B.-I., Schurig, D. and Smith, D. R., Full-wave simulations of electromagnetic cloaking structures, Physical Review E 74, 036621 (2006).

    Dede, E. M., Nomura, T. and Lee, J. S., Thermal-composite design optimization for heat flux shielding, focusing, and reversal, Struct Multidisc Optim 49, 59-68 (2014).

    Dede, E. M., Nomura, T., Schmalenberg, P., and Lee, J. S., Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects, Appl. Phys. Lett. 103, 063501 (2013).

    Guenneau, S. and Amra, C., Anisotropic conductivity rotates heat fluxes in transient regimes, Opt. Express 21, 5, 6578-6583 (2013).

    Guenneau, S., Amra, C., and Veynante, D., Transformation thermodynamics:cloaking and concentrating heat flux, Opt. Express 20, 8207 (2012).

    Han, T., Bai, X., Gao, D., J. T. L. Thong, Li, B. and Qiu, C.-W., Experimental
    Demonstration of a Bilayer Thermal Cloak, Phys. Rev. Lett. 112, 054302 (2014).

    Han, T., Bai, X., Thong , J. T. L., Li, B., and Qiu, C.-W., Full Control and Manipulation of Heat Signatures: Cloaking, Camoufl age and Thermal Metamaterials, Adv. Mater. 26, 1731-1734 (2014).

    Han, T., Tang, X. and Xiao, F., Ellipsoidal cloak for inhomogeneous medium, International Conference on Microwave and Millimeter Wave Proceedings pp. 1665-1668 (2010).

    Han, T., Yuan, T., Li, B. and Qiu, C.-W., Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization, Scientific Reports 10, 1593 (2013).

    Hu, J., Zhou, X. and Hu, G., Design method for electromagnetic cloak with arbitrary shapes based on Laplace’s equation, Opt. Express 17, 1308-1320 (2009).

    Huang, Y., Feng, Y. and Jiang, T., Electromagnetic cloaking by layered structure of homogeneous isotropic materials, Opt. Express 15, 11133 (2007).

    Jiang, W. X., Chin, J. Y., Li, Z., Cheng, Q., Liu, R. and Cui, T. J., Analytical design of conformally invisible cloaks for arbitrarily shaped objects, Physical Review E 77, 066607 (2008).

    Jiji, L. M., Heat transfer essentials: A Textbook., Begell House, Inc. New York (1998)

    Kadic, M., Bückmann, T., Schittny, R., and Wegener, M., Metamaterials beyond Electromagnetism, Rep. Prog. Phys., 76, 126501 (2013).

    Leonhardt, U., Cloak of heat, Nature 498, 440-441 (2013).

    Li, C. and Li, F., Two-dimensional electromagnetic cloaks with arbitrary geometries, Opt. Express 16, 17, 13414-13420 (2008).

    Li, J. Y., Gao, Y. and Huang, J. P., A bifunctional cloak using transformation media, Journal of Applied Physics 108, 074504 (2010).

    Luo, Y., Chen, H., Zhang, J., Ran, L. and Kong, J. A., Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations, Physical Review B 77, 125127 (2008).

    Milton, G. W., Briane, M. and Willis, J. R., On cloaking for elasticity and physical equations with a transformation invariant form, New Journal of Physics 8, 248 (2006).

    Ma, H., Qu, S., Xu, Z. and Wang, J., Approximation approach of designing practical cloaks with arbitrary shapes, Opt. Express 16, 20, 15449-15454 (2008).

    Ma, Y., Lan, L., Jiang, W., Sun, F. and He, S., A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity, NPG Asia Materials 10, 1038 (2013).

    Narayana, S. and Sato, Y., Heat Flux Manipulation with Engineered Thermal Materials, Phys. Rev. Lett. 108, 214303 (2012).

    Narayana, S., Savo, S. and Sato, Y., Transient heat flux shielding using thermal metamaterials, Phys. Rev. Lett. 102,201904 (2013).

    Pendry, J. B., Schurig, D. and Smith, D. R., Controlling electromagnetic fields, Science 312, 5781 (2006).

    Rahm, M., Schurig, D., Roberts, D. A., Cummer, S. A., Smith, D. R. and Pendry, J. B., Design of electromagnetic cloaks and concentrators using form-invariant coordinate transfromations of Maxwell’s equations, Photonics and Nanostructures Fundamentals and Applications 6, 87 (2008).

    Schittny, R., Kadic, M., Bückmann, T. and Wegener, M., Invisibility cloaking in a diffusive light scattering medium, Science 10,1126 (2014).

    Schittny, R., Kadic, M., Guenneau, S., and Wegener, M., Experiments on Transformation Thermodynamics:Molding the Flow of Heat, Phys. Rev. Lett. 110, 195901 (2013).

    Schurig, D., Pendry, J. B. and Simth, D. R., Calculation of material properties and ray tracing in transformation media, Opt. Express 14, 9794-9804 (2006).

    Stenger, N., Wilhelm, M. and Wegener, M., Experiments on Elastic Cloaking in Thin Plates, Phys. Rev. Lett. 108, 014301 (2012).

    Tichit, P. H., Kanté, B., Burokur, S. N. and Lustrac, A., Design of polygonal and elliptical invisibility cloaks, Institut d’Electronique Fondamentale, CNRS UMR
    8622-Universit Paris Sud 11-91405 Orsay-France (2008).

    Wu, Q., Zhang, K., Meng, F. and Li, L., Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak, Journal of Physics D Applied Physics 42, 035408 (2009).

    Xu, H., Shi, X., Gao, F., Sun, H. and Zhang, B., Ultrathin Three-Dimensional Thermal Cloak, Phys. Rev. Lett. 112, 054301 (2014).

    Yan, M., Ruan, Z. and Qiu, M., Scattering characteristics of simplified cylindrical invisibility cloaks, Opt. Express 15, 17772-17782 (2007).

    Yang, F., Mei, Z. L. and Jin, T. Y.,dc Electric Invisibility Cloak, Phys. Rev. Lett. 109, 053902 (2012).

    You, Y., Kattawar, G. W., Zhai, P. W. and Yang, P., Invisibility cloaks for irregular particles using coordinate transformations, Opt. Express 16, 6134-6145 (2008).

    Yang, T., Huang, L., Chen, F. and Xu, W., Heat flux and temperature field cloaks for arbitrarily shaped objects, J. Phys. D: Appl. Phys. 46, 305102 (2013).

    Zhang, J., Luo, Y., Chen, H. and Wu, B. I., Cloak of arbitrary shape, Journal of the Optical Society of America B 25, 1776-1779 (2008).

    余尙儒,電磁波假像裝置之模擬與設計,國立成功大學土木所碩士論文 (2010).

    邱益成,複合椭圓柱之扭轉與傳導問題,國立成功大學土木所碩士論文 (2003).

    陳俊杉,圓柱或球形異向性的屏蔽模擬,國立成功大學土木所碩士論文 (2008).

    蔡育霖,電磁波在不同形狀轉換材料的模擬,國立成功大學土木所碩士論文(2009).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE