| 研究生: |
朱峻毅 Chu, Chun-I |
|---|---|
| 論文名稱: |
以V/H 反應譜比及頻率響應函數評估不同場址井下陣列垂直向反應放大行為 Evaluation of Vertical Amplification Behavior of Responses from Downhole Arrays at Different Sites Using V/H Response Spectral Ratios and Frequency Response Functions |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 一維波傳理論 、地盤反應分析 、大震度人造地震 、頻率響應函數 、等值線性分析法 、STRATA 、DEEPSOIL 、GDMS 、V/H反應譜比 、井下陣列 |
| 外文關鍵詞: | One-dimensional wave propagation theory, Ground response analysis, High-intensity artificial earthquake, Frequency response function, Equivalent linear analysis method, STRATA, DEEPSOIL, GDMS, V/H response spectral ratio, Downhole array |
| 相關次數: | 點閱:151 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區位處環太平洋火山地震帶,地震頻繁,除了水平向運動之外,垂直向地表運動對結構物內之機械設施及管線震動反應影響顯著,尤其對核電廠等重要結構物而言。過去通常依照建築物耐震設計規範依場址所建議之垂直向對水平向設計譜加速度係數進行設計,但近年因應近斷層地震的研究,發現耐震設計規範不一定保守;且大多數地表運動或地盤反應分析僅著重於探討水平向運動,關於垂直向的分析相當有限。
本研究基於波傳理論,將大震度人造地震視為岩盤輸入,採用地盤反應分析軟體STRATA進行分析,探討將大震度地震視為水平向地震事件下PWR電廠地盤之反應,同時比較地震輸入岩盤分類不同時之差異。接著依照PWR電廠井下實際地震事件量測資料繪製頻率響應函數,同時進行V/H反應譜比的繪製,比較其峰值週期與垂直向頻率響應函數顯著週期的關聯性,並探討V/H反應譜比放大之原因。另外,透過其他場址實測地震事件,進一步與PWR電廠井下分析結果進行比較,觀察在不同地震事件下,V/H反應譜比峰值週期之趨勢。
When an earthquake occurs, in addition to horizontal motion, the vertical ground motion significantly affects the mechanical facilities and pipeline vibrations within engineering structures, particularly for critical structures like nuclear power plants. In the past, vertical-to-horizontal design response spectral acceleration coefficients were typically determined based on seismic design codes for the specific site. However, it has been found in recent years that seismic design codes may not always be conservative. This study is based on wave propagation theory, where high-intensity artificial seismic events are input into the soil response analysis software STRATA to analyze the response of the nuclear power plant site under the assumption of a horizontal earthquake. Next, based on actual measurement data from the underground of the nuclear power plant (PWR), frequency response functions are generated, and the V/H response spectral ratio is plotted. The study compares the peak periods of the V/H response spectral ratio with the significant periods in the vertical frequency response function, exploring the relationship between them and investigating the reasons for the amplification of the V/H response spectral ratio. Additionally, by comparing the results with the analysis of seismic events at other sites, the study examines the trends of peak periods in the V/H response spectral ratio under different earthquake events.
[1] Kontoe, S., Christopoulos, A., & May, R. Site response analysis for vertical ground motion. In Proc. of 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. 2013.
[2] Han, B., Zdravkovic, L., & Kontoe, S. Numerical and analytical investigation of compressional wave propagation in saturated soils. Computers and Geotechnics, 75, 93-102. 2016.
[3] Tsai, C. C., & Liu, H. W. Site response analysis of vertical ground motion in consideration of soil nonlinearity. Soil Dynamics and Earthquake Engineering, 102, 124-136. 2018.
[4] Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1). 1989.
[5] Boore, D. M. Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion. Bulletin of the Seismological Society of America, 100(4), 1830-1835. 2010.
[6] Prabhu, K.M., Window functions and their applications in signal processing. Taylor & Francis. 2014.
[7] Kottke, A.R. and E.M. Rathje, Technical manual for Strata. Pacific Earthquake Engineering Research Center Berkeley, California. 2009.
[8] Hashash, Y. M. A., Musgrove, M. I., Harmon, J. A., Ilhan, O., Xing, G., Numanoglu, O., ... & Park, D. DEEPSOIL 7.0, user manual. Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign. 2020.
[9] Kramer, S. L. Geotechnical earthquake engineering: Pearson Education India. 1996.
[10] Fayaz, J. Generate RotD Spectra Using Matlab. Github. https://github.com/jfayaz/Generate_RotD_Spectra_Matlab. 2020.
[11] 郭安妮,「垂直地動地盤反應分析:標準分析基準之建立」,科技部補助專題研究計畫成果報告,MOST 106-2221-E-002-089-,2018。
[12] 王允佑,「探討破裂方向性與場址效應對近斷層地動之影響-以美濃與花蓮地震為例」,碩士論文,國立中央大學地球科學系,桃園市(2019)。
[13] 謝宏灝,「利用井下地震儀陣列探討單站頻譜比法之應用」,碩士論文,國立中央大學地球物理研究所,桃園市(2001)。
[14] 黃尹男,「近斷層地區摩擦單擺型隔震系統之行為與設計流程研究」,科技部補助專題研究計畫成果報告,MOST 108-2221-E-002-083-,2018。
[15] 劉星彣,「以井下陣列分析地盤反應運動」,碩士論文,國立中興大學土木工程研究所,台中市(2019)。
[16] 邱欣怡,「鉛心橡膠基礎隔震建築樓板反應譜之樓高與共振效應評估」,碩士論文,國立成功大學土木工程研究所,台中市(2014)。
[17] 陳威中、姚昭智、郭鳳文、張友珊,「建築物受垂直向地震之研究分析」,台灣建築學會,建築學報(2017)。
[18] 鄭駿達,「運用頻率響應函數與STRATA進行井下陣列觀測資料之地盤反應分析」,碩士論文,國立成功大學土木工程研究所,台南市(2021)。
[19] 黃昱菱,「核電廠場址井下陣列地盤反應分析與圍阻體結構健康診斷研究」,碩士論文,國立成功大學土木工程研究所,台南市(2022)。
[20] 台灣電力公司,「地震危害與篩選報告-PWR核能發電廠」,2021。
[21] 內政部營建署,「建築物耐震設計規範及解說」,2022。
[22] 泰興工程顧問股份有限公司,「台電PWR廠圍阻體結構分析模型建立及其他地震資料驗證計畫-期末報告」,2013。
[23] 方辰云,「鉛心橡膠支承搭配液流阻尼器基礎隔震建築數位分身之識別研究」,碩士論文,國立成功大學土木工程研究所,台南市(2022)。
[24] 中央氣象局地震中心,「臺灣地震與地球物理資料管理系統」,中央氣象局,from https://gdmsn.cwb.gov.tw/index.php,2020。