簡易檢索 / 詳目顯示

研究生: 張維哲
Chang, Wei-Tse
論文名稱: 電化學技術製備奈米結構材料之研究
A study on the fabrication of nanostructured materials using electrochemical technology
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 110
中文關鍵詞: 電化學沉積技術脈衝電位高深寬比結構功函數分析合金異常共鍍脈衝陽極氧化鋁
外文關鍵詞: Electrodeposition, pulse voltage, high-aspect-ratio structures, Work function, anomalous co-deposition, hybrid pulse anodization (HPA)
相關次數: 點閱:142下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米結構材料為現今的人們帶來許多的便利與源源不絕的商機,其中電化學技術又是製備奈米結構材料方法中最為便捷且成本低廉的方式,因此本論文以電化學技術製備奈米結構材料,分析其奈米機械性質、成分分析、結構分析與電性分析。綜觀電化學技術可分為陰極還原與陽極氧化兩大類,因此本論文主要包含此兩大類; 1.電化學沉積鎳與鎳合金鍍層之研究,其中包含脈衝電鍍的鍍層性質分析、脈衝電鍍高深寬比結構分析、合金共鍍分析、合金功函數分析與低溫電鍍之研究;2.室溫脈衝陽極氧化鋁模版製備技術,此研究將脈衝電位技術應用於陽極氧化鋁模板製程中,克服傳統陽極氧化鋁於低溫環境製程的限制,且有助於奈米孔隙的均勻分佈。
    論文第一部分為電化學方法沉積奈米結構材料技術。在脈衝電鍍的鍍層性質分析中,先以脈衝電位於50 °C的電解液環境中進行電鍍,鍍層因脈衝電位造成電雙層(double layer)豐富的離子濃度,而還原形成高緻密性的鍍層,奈米壓痕器測試(nano-indentation test)證實,其硬度由傳統鎳金屬的3.90 GPa提升至4.87 GPa (100~200 Hz)。在高深寬比微結構的電鑄技術中,以低功率的二氧化碳雷射蝕刻PMMA形成微米級的結構,並進行脈衝電位電鑄的離子填充性能分析,數值分析與實驗結果顯示,提高脈衝電位至100~200 Hz的範圍時,金屬離子在高深寬比結構底部具有較高濃度與較佳的離子穿透性,可提升微結構電鑄的效率。在鎳基合金的異常共鍍(anomalous co-deposition)方面,鎳鈷合金鍍層的奈米壓痕測試顯示出鍍層在22.53 % 的鈷含量時有最高的硬度 8.72 GPa,且脈衝電位可有效抑制異常共鍍現象的發生。在鎳鈷合金的功函數變異分析中,我們分別以紫外光光譜儀(ultraviolet photoelectron spectroscopy, UPS)與自製凱文探針(Kelvin probe)來分析功函數値,並比較其差異性。結果顯示,藉由製程參數的調整,鎳鈷合金的鈷含量可由22.53 % 變異至13.19 %,紫外光光譜儀所分析的功函數値由3.89 eV 變化至 4.07 eV,凱文探針所分析的功函數値趨勢與紫外光光譜儀的趨勢相同,顯示凱文探針分析功函數的性能良好。在低溫電化學沉積技術方面,低溫環境的沉積條件與室溫甚至高溫(40-60 ˚C)不同,主要是因為電解液中的離子擴散能力不同,使低溫電鍍的困難度提高,結果顯示在5 ˚C以直流電鍍的鍍層硬度值達6.18 GPa,係由於熱殘留應力(thermal residual stress)與細晶強化的影響所造成。
    論文第二部分為陽極氧化鋁模板製備技術,我們提出一種可於室溫環境中進行的脈衝電位陽極氧化法,不同於先前技術,陽極氧化鋁製程需在低溫環境中(0~10 °C)進行,此脈衝電位陽極氧化法可在20~30 °C的室溫環境中製備出奈米結構的模板,主要是因為脈衝電位可有效抑制製程中所產生的焦耳熱,而達到室溫環境的製程能力,且奈米孔徑的均勻性更甚於傳統的直流陽極氧化製程,在此部份中將探討製程參數對孔隙結構的影響與脈衝陽極氧化的反應機制。

    Nanostructured materials bring business-opportunities and conveniences in life nowadays. Electrochemical technique is one of the most effective and cheap method for producing nanostructured materials. Therefore, this dissertation presents the fabrication of nanostructured material by electrochemical method and the analysis of nanomechanical properties, composition, structure and electronic property of material are also discussed. The main frame of this dissertation can be divided into two parts; one is electrochemical deposition of nickel and nickel-cobalt alloy and the other is anodic oxidation of aluminum.
    The first part of dissertation concerns about electrodeposited nanostructured materials. In pulse eletrodeposition of Ni at 50 ˚C, the pulse voltage makes rich in ions within electric double layer for reduction and obtains compact deposits. The results of nano-identation tests show that the hardness of Ni deposits in pulse electrodeposition is 4.87 GPa which is higher than that in direct current (DC) electrodeposition (3.90 GPa). In terms of high-aspect-ratio-micro-structure (HARMS) electrodeposition, we performed the HARMS from PMMA by CO2 laser ablation and analyzing the ion filling ability into micro-cavity via pulse current electrodeposition. Both numerical simulation and experimental results show that higher concentration of ion at cathodic surface and better penetration ability of ion can be obtained in pulse electrodeposition than that in DC electrodeposition. In Ni-Co anomalous co-deposition, the highest hardness which is 8.72 GPa was obatained from the Ni-Co alloy films with 22.53 % Co content. Furthermore, pulse electrodeposition inhibits the anomalous behavior effectively during co-deposition. In part of work function (WF) evaluation, the WF of Ni-Co film was measured via ultraviolet photoelectron spectroscopy (UPS) and the self-made Kelvin probe (KP). The WF of Ni-Co films increases form 3.89 eV to 4.07 eV with decreasing Co content from 22.53 % to 13.19 %, and both UPS and KP presented the identical results. Finally, in low temperature electrodepositon, electrodeposition is difficult to perform at low temperature due to ineffective mass transfer. The results show that the highest hardness of Ni films is 6.18 GPa obtaining at 5 ˚C, the hardness is higher than that in conventional electrodeposited Ni films (~4 GPa) and close to the Ni-Co alloy films (~8 Gpa). Two main strengthenings contribute to the low-temperature electroplated deposits; one is thermal residual stress strengthening and the other is Hall-Petch strengthening.
    The second part of dissertation concern about the room temperature (RT) hybrid pulse anodized (HPA) aluminum oxide. Conventional anodic aluminum oxide (AAO) template was performed using potentiostatic method from high-purity (99.999%) aluminum films at low temperatures of 0-10 °C to avoid dissolution effects at relatively high RT of 20-30 °C. The HPA provides ability to process at RT because it inhibits the Joule’s heat generation during the anodization, and thus suppresses the dissolution effect effectively. The HPA not only merits manufacturing convenience and cost reduction but also promotes uniformity of AAO pores distribution. Therefore, the HPA method provides minimized heat fluctuation at RT, improves the uniformity and keeps the growth rate close to DCA

    摘要 I Abstract III 誌謝 V Table of Contents VI Figure Captions IX Nomenclature XIII Chapter 1 Introduction 1 1-1 Background of the research 1 1-2 Objects of the research 2 1-3 Outline of this dissertaion 3 Chapter 2 Literature Review 6 2-1 Electrodeposition 6 2-1-1 Pulse electrodeposition of nickel 6 2-1-2 Electrodeposition of nickel alloy 7 2-1-3 Work function evaluation of Ni-Co deposits 8 2-1-4 Electrochemistry at low electrolytic temperature 9 2-2 Anodic aluminum oxide template 10 Chapter 3 Experimental Procedures 16 3-1 Electrodeposition of nickel 16 3-1-1 Pulse electrodeposition 16 3-1-2 Pulse electrodeposition into high aspect ratio micro-structrues 16 3-2 Electrodeposition of nickel-cobalt alloy 18 3-2-1 Electrodeposition by direc current (DC) 18 3-2-2 Electrodeposition by pulse current 18 3-3 Electrodeposition at low electrolytic temperature 19 3-4 Hybrid pulse anodized alumina oxide template 20 3-5 Inspective instruments 21 3-5-1 Evaluation of surface morphology 21 3-5-2 Composition and phase identification 21 3-5-3 Evaluation of mechanical properties 22 3-5-4 Evaluation of surface roughness and film thickness 22 3-5-5 Evaluations of work function 22 Chapter 4 Electrodeposition of Nickel 27 4-1  Pulse current electrodeposited Ni films 27 4-1-1 Morphology evaluation 27 4-1-2 Calculation of ion concentration at cathodic surface 27 4-1-3 Nanoindentation properties of deposites 29 4-2 Electrodeposition into high-aspect-ratio-micro-structure (HARMS) by pulse current 30 4-2-1 Features of HARMS 30 4-2-2 HARMS electroforming 30 4-2-3 Calculation of ion concentration at cathodic surface 31 4-3 Summary 35 Chapter 5 Electrodeposition of Nickel-Cobalt (Ni-Co) Alloy 44 5-1 The anomalous behavior and properties of Ni-Co films 44 5-2 Phase indentification 45 5-3 Morphology evolution 45 5-4 Nanomechanical properties 46 5-5 Work function evaluation of Ni-Co films 47 5-5-1 Ultraviolet photoelectron spectroscopy 47 5-5-2 Self-made Kelvin probe 48 5-6 Summary 50 Chapter 6 Electrodeposition of Nickel Films at Low Electrolytic Temperatures 59 6-1 Difference between potentiostatic and galvanostatic 59 6-2 Chronoamperometry 60 6-3 Electrocrystallization at low electrolytic temperatures 62 6-4 Phase identification 63 6-5 Nanomechanical properties 64 6-6 Strengthening mechanism 65 6-7 Summary 69 Chapter 7 Hybrid Pulse Anodization for The Fabrication of Porous Anodic Alumina at Room Temperature 77 7-1 Conventional DC anodization (DCA) versus hybrid pulse anodization (HPA) at room temperature 77 7-2 Current-time curve difference in DCA and HPA 78 7-3 Anodization mechanism of DCA and HPA 79 7-4 Gray-scale image analysis of SEM micrographs of AAO 81 7-5 Evolution of nanopores distribution by DCA and HPA from different puritiy aluminum and process duration 81 7-6 Summary 85 Chapter 8 Conclusions and Future Works 93 8-1 Conclusions 93 8-2 Future works 94 References 96 Vita 109 Publications 110

    1 A. Ibanez and E. Fatas, “Mechanical and structural properties of electrodeposited copper and their relation with the electrodeposition parameters”, Surf. Coat. Tech. vol.191, pp.7–16, 2005.
    2 K. P. Wong, K. Chan and T. M. Yue, “A study of surface finishing in pulse current electroforming of nickel by utilizing different shaped waveforms”, Surf. Coat. Tech. vol.115, pp.132–139, 1999.
    3 H. Masuda and K. Fukuda, “Ordered nanohole array made by a two-step replication of honeycomb structures of andic alumina”, Science vol. 268, pp.1466-1468, 1995.
    4 N. S. Qu, K. C. Chan and D. Zhu, “Surface roughening in pulse current and pulse reverse current electroforming of nickel”, Surf. Coat. Tech. vol. 91, pp.220–224, 1997.
    5 K. C. Chen, N. S. Qu and D. Zhu, “Effect of reverse pulse current on the internal stress of electroformed nickel”, J. Mater. Process Tech. vol. 63, pp.819–822, 1997.
    6 Y. M. Yeh, G. C. Tu and T. H. Fang, “Nanomechnical properties of nanocrystalline Ni-Fe mold insert”, J. Alloy Compd. vol. 372, pp.224–230, 2004.
    7 R. Orinakova, A. Turonova, D. Kladekova, M. Galova and R.M. Smith, “Recent developments in the electrodeposition of nickel and some nickel-based alloys” J. Appl. Electrochem. vol. 36, pp.957-972, 2006.
    8 G. Qiao, T. Jing, N. Wang, Y. Gao, X. Zhao, J. Zhou and W. Wang, “Effect of current density on microstructure and properties of bulk nanocrystalline Ni–Co alloys prepared by JED”, J. Electrochem. Soc. vol. 153, pp.C305-C308, 2006.
    9 L. Wang, Y. Gao, Q. Xue, H. Liu and T. Xu, “Microstructure and tribological properties of electrodeposited Ni-Co alloy deposits” Appl. Surf. Sci. vol. 242, pp.326-332, 2005.
    10 Y. Zhuang and E.J. Podlaha, “NiCoFe ternary alloy deposition”, J. Electrochem. Soc. vol. 150, pp.C219-C224, 2003.
    11 H. Dahms and I. M. Croll, “The Anomalous Codeposition of Iron-Nickel Alloys”, J. Electrochem. Soc. vol. 112, pp.771-775, 1965.
    12 S. Hessami and C.W. Tobias, “A methematical model for anomalous codeposition of nickel-iron on a rotating disk electrode”, J. Electrochem. Soc. vol. 136, pp.3611-3616, 1989.
    13 K. M. Yin, J. H. Wei, J. R. Fu, B. N. Popov, S. N. Popova and R. E. White, “Mass transport effects on the electrodeposition of iron-nickel alloys at the presence of additives”, J. Appl. Electrochem. vol. 25, pp.543-555, 1995.
    14 J. Vaes, J. Fransaer and J. P. Celis, “The role of metal hydroxides in Ni-Fe deposition”, J. Electrochem. Soc. vol. 147, pp.3718-3724, 2000.
    15 A. Bai and C. C. Hu, “Effects of electroplating variables on the composition and morphology of nickel-cobalt deposits plated through means of cyclic voltammetry”, Electrochem. Acta vol. 47, pp.3447-3456, 2002.
    16 C. C. Hu and A. Bai, “The inhibition of anomalous codeposition of iron-group alloys using cyclic voltammetry”, J. Electrochem. Soc. vol. 149, pp.C615-C622, 2002.
    17 A. Bai, C. C. Hu and T. C. Wen, “Composition control of ternary Fe-Co-Ni deposits using cyclic voltammetry”, Electrochem. Acta vol. 48, pp.2425-2434, 2003.
    18 D. Golodnitsky, N. V. Gudin, and G. A. Volyanuk, “Study of nickel-cobalt alloy electrodeposition from a sulfamate electrolyte with different anion additives”, J. Electrochem. Soc. vol. 147, pp.4156-4163, 2000.
    19 E. Gomez, S. Pane, X. Alcobe and E. Valles, “Influence of a cationic surfactant in the properties of cobalt-nickel Electrodeposits”, Electrochem. Acta vol. 51, pp.5703-5709, 2006.
    20 C. K. Chung and W. T. Chang, “Effects of pulse frequency on the morphology and nanoidentation property of electroplated nickel films”, Microsys. Technol. vol. 13, pp.537-542, 2007.
    21 D. Y. Li, L. Wang and W. Li, “Effects of grain size from micro scale to nanoscale on the yield strain of brass under compressive and tensile stresses using a Kelvin probing technique”, Mater. Sci. Eng. A. vol. 384, pp.355–360, 2004.
    22 W. Li and D. Y. Li, “Influence of surface morphology on corrosion and electronic behavior”, Acta Materialia vol. 54, pp.445–452, 2006.
    23 L. Kelvin, “Contact electricity of metals”, Phiols Mag. J. Sci. vol. 46, pp.82–120, 1898.
    24 W. A. Zisman, “A new method of measuring contact potential differences in metals”, Rev. Sci. Instrum. vol. 3, pp.367-370, 1932.
    25 I. D. Baikie and P. J. Estrup, “Low cost PC based scanning Kelvin probe”, Rev. Sci. Instrum. vol. 69, pp.3902-3907, 1998.
    26 J. S. Kim, B. Lagel, E. Moons, N. Johansson, I. D. Baikie, W. R. Salaneck, R. H. Friend and F. Cacialli, “Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparision”, Synthetic Met. vol. 111, pp.311-314, 2000.
    27 C. Bromberger, H. J. Jansch and D. Fick, “Determination of the coverage dependent work function for Li absorbed on Ru (001)”, Suf. Sci. vol. 506, pp.129-136, 2002.
    28 T. Sakurai, Y. Momose and K. Nakayama, “New method to determaine the work function using photoelectron emission”, J. Surf. Sci. Nanotech. 3, pp. 179-183, 2005.
    29 F. Rossi, G. I. Opat and A. Cimmino, “Modified kelvin technique for measuring strain-induced contact potentials”, Rev. Sci. Instrum. vol. 63, pp.3736-3743, 1992.
    30 G. Kiss, E. B. Varhegyi, J. Mizasei, O. H. Krafcsik, K. Kovacs, G. Negyesi, B. Ostrick, H. Meixner and F. Reti, “Examination of the CO/Pt/Cu layer structure with Kelvin probe and XPS analysis”, Sensor & Actuator B vol. 68, pp.240-243, 2000.
    31 S. Yamamoto, “Electron emission and work function – past, present and future”, Appl. Surf. Sci. vol. 251, pp.4-13, 2005.
    32 Y. Yang, T. Kurfess, S. Liang and S. Danyluk,“Application of a specialized capacitance probe in bearing diagnosis”, Wear vol. 225, pp. 1215-1221, 1999.
    33 T. Glatzel, H. Steigert, S. Sadewasser, R. Klenk and M. C. Lux-Steiner, “Potential distribution of Cu(In,Ga)(S,Se)2-solar cell cross-sections measured by Kelvin probe force microscopy”, Thin Solid Films vol. 480, pp.177-182, 2005.
    34 M. Stratmann and H. Streckel, “On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique”, Corr. Sci. vol. 30, pp.681-696, 1990.
    35 M. Stratmann, H. Streckel, “On the atmospheric corrosion of metals which are covered with thin electrolyte layers—II. Experimental results”Corr. Sci. vol. 30, pp.697-714, 1990.
    36 M. Stratmann, H. Streckel, K. T. Kim, S. Crockett, “On the atmospheric corrosion of metals which are covered with thin electrolyte layers-iii. the measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers”Corr. Sci. vol. 30, pp.715-734, 1990.
    37 M. Tanimoto and O. Vatel, “Kelvin probe force microscopy for characterization of semiconductor devices and processes”J. Vac. Sci. Technol. B vol. 14, pp.1547-1551, 1996.
    38 S. Kamiya, M. Iwami, T. Tsuchiya, M. Kurouchi, J. Kikawa and T. Yamada, “Kelvin probe force microscopy study of surface potential transients in cleaved AlGaN/GaN high electron mobility transistors”, Appl. Phys. Lett. vol. 90, pp.213511, 2007.
    39 A. Kikukawa, S. Hosaka and R. Imura, “Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy”, Appl. Phys. Lett. vol. 66, pp.3510, 1995.
    40 A. K. Sinensky and A. M. Belcher, “Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy”, Nat. Nanotechnol. vol. 2, pp.653-659, 2007.
    41 R. A. Lodge and B. Bhushan, “Surface potential measurement of human hair using Kelvin probe microscopy”, J. Vac. Sci. Technol. vol. 25, pp.893-902, 2007.
    42 C. K. Chung and W. T. Chang, “Effects of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni-Co films”, Thin Solid Films vol. 517, pp.4800-4804, 2009.
    43 C. K. Chung, C. C. Peng, B. H. Wu and T. S. Chen, “Residual stress and hardness behaviors of the two-layer C/Si films”, Surf. Coat. Tech. vol. 202, pp.1149-1153, 2007
    44 H. Oettel and R. Wiedemann, “Residual stresses in PVD hard coatings”, Surf. Coat. Tech. vol. 76, pp.265-273, 1995.
    45 M. Opallo and A. Prokopowicz, “Low temperature study of nickel hydroxide electrode in frozen electrolyte”, Electrochem. Commun. vol. 5, pp.737-740, 2003.
    46 J. X. Yu, L. Wang, L. Su, X. P. Ai and H. X. Yang, “Temperature effects on the electrodeposition of zinc”, J. Electrochem. Soc. vol. 150, pp.C19-C23, 2003.
    47 A. Dolati and S. S. Mahshid, “A study on the kinetics of Co-Ni/Cu multilayer electrodeposition in sulfate solution”, Mater. Chem. Phys., vol. 108, pp.391-396, 2008.
    48 N. V. Osetrova, V. S. Bagotzky, S. F. Guizhevsky and Y. M. Serov, “Electrochemical reduction of carbonate solution at low temperatures”, J. Electoanal. Chem. vol. 453, pp.239-241, 1998.
    49 C. Marcella, K. Simin amd S. Ulrick, “Electrical and electrochemical processes at low temperatures”, Electrochem. Acta vol. 42, pp.841-848, 1997.
    50 P. K. Nahar, “Study of the performance degradation of thin film aluminum oxide sensor at high humidity”, Sensors & Actuators B vol. 63, pp.49-54, 2000.
    51 R. K. Nahar, and V. K. Khanna, “Ionic doping and inversion of the characteristic of thin film porous Al2O3 humidity sensor”, Sensors & Actuators B vol. 46, pp.35-41, 1998.
    52 G. Sberveglieri, R. Anchisini, R. Murri, C. Ercoli, and N. Pinto, “Al2O3 sensor for low humidity content: characterization by impedance spectroscopy”, Sensors & Actuators B vol. 32, pp.1-5, 1996.
    53 Y. D. Wang, S. J. Chua, M. S. Sander, P. Chen, S. Tripathy and C.G. Fonstad, “Fabrication and properties of nanoporous GaN films”, Appl. Phys. Lett. vol. 85, pp.816-818, 2004.
    54 Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN ordered nanoporous GaN template”, Appl. Phys. Lett. vol. 87, pp.251915, 2005.
    55 H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi and T. Tamamura, “Photonic crystal using anodic porous alumina”, Jpn. J. Appl. Phys., vol. 38, pp. L1403-L1405, 1999.
    56 V. Mizeikis, I. Mikulskas, R. Tomasiunas, S. Juodkazis, S. Matsuo and H. Misawa, “Optical charateristics of two-dimensional photonic crystals in anodic aluminum oxide films”, Jpn. J. Appl. Phys. vol. 43, pp.3643-3647, 2004.
    57 H. Asoh, M. Matsuo, M. Yoshihama and S. Ono, “Transfer of nanoporous pattern of anodic porous alumina into Si substrate”, Appl. Phys. Lett. vol. 83, pp.4408-4410, 2003.
    58 S. Y. Jeong, M. C. An, Y. S. Cho, D. J. Kim, M. C. Paek and K. Y. Kang, “Preparation of anodic aluminum oxide templates on silicon substrates for growth of ordered nano-dot arrays”, Curr. Appl. Phys. vol. 9, pp.S101-S103, 2009.
    59 S. Inoue, S. Z. Chu, K. Wada, D. Li and H. Haneda, “New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum”, Science and Technology of Advanced Materials vol. 4, pp.269-276, 2003.
    60 S. H. Jeong, O. J. Lee, K. H. Lee, S. H. Oh and C. G. Park, “Packing density control of aligned carbon nanotubes”, Chem. Mater. vol. 14, pp.4403-4405, 2002.
    61 C. H. Liu, W. C. Yiu, F. C. K. Au, J. X. Ding, C.S. Lee, and S. T. Lee, “Electrical properties of zinc oxide nanowires and intramolecular p–n junctions”, Appl. Phys. Lett vol. 83, pp.3168-3170, 2003.
    62 K. B. Shelimov, D. N. Davydov, and M. Moskovits, “Template-grown high-density nanocapacitor arrays” Appl.Phys. Lett. vol. 77, pp.1722-1724, 2000.
    63 Z. Wu, C. Richter and L. Menon, “A study of anodization process during pore formation in nanoporous alumina templates”, J. Electrochem. Soc. vol. 154, pp.E8-E12, 2007.
    64 I. Vrublevsky, V. Parkoun, J. Schreckenbach and W. A. Goedel, “Dissolution behavior of the barrier layer of porous oxide films on aluminum formed in phosphoric acid studied by a re-anodizing technique”, Appl.Surf.Sci. vol. 252, pp.5100-5108, 2006.
    65 P. Y. Deng, X. D. Bai, X. W. Chen and Q. J. Feng, “Anodic oxidation of aluminum at high current densities and mechanism of film formation”, J.Electrochem.Soc. vol. 151, pp.B284-B289, 2004.
    66 C. Y. Han, G. A. Willing, Z. Xiao and H. H. Wang, “Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching”, Langmuir vol. 23, pp.1564-1568, 2007.
    67 M. Tang, J. He, J. Zhou and P. He, “Pore-widening with the assistance of ultrasonic: A novel process for preparation porous anodic aluminum oxide membrane”, Mater. Lett. vol. 60, pp.2098-2100, 2006.
    68 I. D. Graeve, H. Terryn and G. E. Tompson, “Influence of local heat development on film thickness for anodizing aluminum in sulfuric acid”, J.Electrochem.Soc. vol. 150, pp.B158-B165, 2003.
    69 J. M. Montero-Moreno, M. Sarret and C. Müller, “Some considerations on the influence of voltage in potentiostatic two-step anodizing of AA1050”, J. Electrochem. Soc. vol. 154, pp.C169-C174, 2007.
    70 G. D. Sulka and K. G. Parkola, “Temperature influence on well-ordered nanopore structures grown by Anodization of aluminum in sulphuric acid”, Electrochim.Acta vol. 52, pp.1880-1888, 2007.
    71 L. E. Fratila-Apachitei, J. Duszcyzyk and L. Katgerman, “AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature using different current waveforms”, Surface and Coatings Technology vol. 165, pp.232-240, 2003.
    72 C. C. Chen, J. H. Chen and C. G. Chao, “Post-treatment method of producing ordered array of anodic aluminum oxide using general purity commercial (99.7 %) aluminum”, Jpn.J. Appl. Phys. vol. 44, pp.1529-1533, 2005.
    73 D. Lo and R. A. Budiman, “Fabrication and characterization of porous anodic alumina films from impure aluminum foils”, J. Electrochem. Soc. vol. 154, pp.C60-C66, 2007.
    74 D. H. Fan, G. Q. Ding, W. Z. Shen and M. J. Zheng, “Anion impuritues in porous alumina membranes: Exisgtence and functionality”, Micropor. Mesopor. Mat. vol. 100, pp.154-159, 2007.
    75 X. F. Zhu, D. D. Li, Y. Song and Y. H. Xiao, “The study on oxygen bubbles of anodic alumina based on high putity aluminum”, Mater. Lett. vol. 59, pp.3160-3163, 2005.
    76 Y. T. Tian, G. W. Meng, T. Gao, S. H. Sun, T. Xie, X. S. Peng, C. H. Ye and L. D. Zhang, “Alumina nanowire arrays standing on a porous anodic alumina membrane”, Nanotechnology vol. 15, pp.189-191, 2004
    77 A. J. Yin, W. Li, A. J. Bennett and J. M. Xu, “Fabrication of highly ordered metallic nanowires by electrodeposition”, Appl.Phys.Lett. vol. 79, pp.1039-1041, 2001.
    78 K. Nielsch, F. Müller, A. P. Li and U. Gösele, “Unifrom nickel deposition into ordered alumina pores by pulsed electrodeposition”, Adv. Mater. vol. 12, pp.582-586, 2000.
    79 Y. G. Guo, L. J. Wan, C. F. Zhu, D. L. Yang, D. M. Chen and C. L. Bai, “Ordered Ni-Cu nanowire array with enhanced coercivity”, Chem. Mater. vol. 15, pp.664-667, 2003.
    80 Y. F. Mei, X. L. Wu, X. F. Shao, G. G. Siu and X. M. Bao, “Formation of an array of isolated alumina nanotubes”, Europhys. Lett. vol. 62, pp.595-599, 2003.
    81 H. H. Shih and S. L. Tzou, “Study of anodic oxidation of aluminum in mixed acid using a pulsed current”, Surf. Coat. Technol. vol. 124, pp.278-285, 2000.
    82 G. P. Sklar, K. Paramguru, M. Misra and J. C. Lacombe, “Pulsed electrodepostion into AAO templates for CVD growth of carbon nanotube arrays” Nanotechnology vol. 16, pp.1265-1271, 2005.
    83 N. W. Liu, A. Datta, C. Y. Liu and Y. L. Wang, “High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays”, Appl. Phys. Lett. vol. 82, pp.1281-1283, 2003.
    84 H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina”, Adv. Mater. vol. 13, pp.189-192, 2001.
    85 K. P. Wong, K. C. Chen, T. M. Yue, “Modeling the effect of complex waveform on surface finishing in pulse electroforming of nickel”, Surf. Coat. Tech. vol. 135, pp.91-97, 2000.
    86 A. J. Bard and F. Larry, Electrochemical mothods fundametals and applications, second edition, Willey, New York, 2001.
    87 K. P. Wong, K. C. Chen and T. M. Yue, “A study of hardness and grain size in pulse current electroforming of nickel using different shaped waveforms”, J. Appl. Electrochem. vol 31, pp.25-34, 2001
    88 K. P. Wong, K. C. Chen and T. M. Yue, “Influnce of spike current in different shaped waveforms on the surface finish of nickel electrofoms ”, Surf. Coat. Tehcnol. vol. 140, pp.284-292, 1997.
    89 C. Bromberger, H. J. Jansch and D. Fick, “Determination of the coverage dependent work function for Li absorbed on Ru (001)”, Surf. Sci. vol. 506, pp.129-136, 2002.
    90 H. B. Michaelson, Electron work function of elements, CRC Handbook of Chemistry and Physisc 73rd ed. Ch.12, 1992.
    91 A. Sahari, A. Azizi, G. Schmerber and A. Dinia, “Nucleation, growth and morphological properties of electrodeposited nickel films from different bath”, Surf. Rev. Lett. vol. 15, pp.717-725, 2008.
    92 G. T. Burstein and G. A. Wright, “Oxidation of atomic-hydrogen adsorbed on nickel”, J. Electroanal. Chem. vol.50, pp.399-401, 1974.
    93 A. N. Correia, S. A. S. Machado and L. A. Avaca, “Direct observation of overlapping of growth centres in Ni and Co electrocrystallisation using atomic force microscopy”, J. Electroanal. Chem. vol. 488, pp.110-116, 2000.
    94 W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments”, J. Mater. Res. Vol. 7, pp.1564-1583, 1992.
    95 D. William and Jr. Callister, Fundamentals of Materials Science and Engineering, 2nd ed., John Wiley & Sons Inc., NJ, pp.420-423, 2005.
    96 C. Ramírez, E. M. Arce, M. Romero-Romo and M. Palomar-Pardavé, “The effect of temperature on the kinetics and mechanism of silver electrodeposition”, Solid State Ionics vol. 169, pp.81-85, 2004.
    97 C. K. Chung, R. X. Zhou, T. Y. Liu and W. T. Chang, “Hybrid pulse Anodization for the fabrication of porous anodic alumina films from commercial purity (99 %) aluminum at room temperature”, Nanotechnology vol. 20, pp.055301, 2009.
    98 L. Dusan, L. Mickael and Jr. L. Dusan, “Porous alumina wirh shaped pore geometries and complex pore architectures by cyclic anodization”, SMALL vol. 12, pp.1392-1397, 2009.
    99 H. B. Michaelson, CRC handbook of chemistry and physics, 73rd ed., Ch. 12, 1992.
    100 W. Wu, J.S. Yuan, S.H. Kang and A. Oates, “Electromigration subjected to Joule heating under pulsed DC stress”, Solid-State Electron vol. 45, pp.2051-2056, 2001.
    101 Z. Li, G. Wu, Y. Wang, Z. Li and Y. Sun, “Numerical calculation of electromigration under pulse current with Joule heating”, IEEE T. Electron Dev. vol. 46, pp.70-77, 1999.
    102 G. Xiang, W. H. James, K. D. Steven and J. B. Michael, “Simulation of temperature cycling effects on electromigration behavior under pulsed current stress”, IEEE T. Electron Dev. vol. 45, pp.380-386, 1998

    無法下載圖示 校內:2015-07-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE