簡易檢索 / 詳目顯示

研究生: 鄭中嘉
Cheng, Chung-Chia
論文名稱: 基於GNSS ZTD與深度學習時間序列模型進行暖季弱綜觀環境於臺南之午後熱對流預報
Warm season afternoon thunderstorm prediction under weak synoptic environment over Tainan based on GNSS ZTD and deep learning time series forecasting model
指導教授: 陳佳宏
Chen, Chia-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 180
中文關鍵詞: 午後雷陣雨短時預報暖季弱綜觀全球衛星導航系統(GNSS)天頂向對流層總延遲量(ZTD)深度學習時間序列模型
外文關鍵詞: Afternoon Thunderstorm, Near-future Prediction, Warm Season and Weak Synoptic Environment, Global Navigation Satellite System, Zenith Tropospheric Delay, Deep Learning Time Series Forecasting Model
相關次數: 點閱:122下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 午後雷陣雨具備短延時強降雨、發生於局部空間,以及非線性發展過程的特性,需要考量運算成本與網格空間解析度的數值天氣預報模式於午後雷陣雨的預報上面臨挑戰;另一方面,由於軟硬體的成熟與資料完整性的提升,人工智慧演算法於各領域蓬勃發展,因其快速推論、易於新增潛在預報因子,與擅長捕捉資料中非線性特徵等優點,有越來越多的研究嘗試使用人工智慧演算法進行預報模型的建構。
      仰賴於全球衛星導航系統(Global Navigation Satellite System, GNSS),生活中由定位衍生的服務相繼推出;於氣象上更可利用衛星訊號反推大氣的水氣含量(Bevis et al., 1992),衛星訊號由衛星發射至地面接收器時,將通過大氣層,其傳遞過程並非以直線前進的方式進行,因而造成時間上的延遲。延遲量可區分為對流層延遲(Zenith Tropospheric Delay, ZTD)與電離層延遲,其中的ZTD是與水氣含量正向相關的指標,可以提供大氣水氣資訊。本研究使用2010年至2020年之氣象與ZTD資訊,針對臺南地區暖季並且符合大環境為弱綜觀的資料,建構深度學習時間序列模型,用於午後1至3小時之短時預報,並客觀量化GNSS ZTD對於預報模型的優化效果。

    This study uses Global Navigation Satellite System (GNSS) Zenith Tropospheric Delay (ZTD) and deep learning time series forecasting model to perform afternoon thunderstorm prediction under warm season and weak synoptic environment over Tainan. The main goals are (1) quantifying the performance gain when using ZTD and (2) deciding the best forms of model input for different tasks.
    In terms of single-station classification problems, using ZTD as a predictor, when predicting whether it will rain after 3 hours, the overall AUCs at the mountain, the plain, and the near-coast areas increase around 10.60%, 8.13% and 9.77%, respectively, comparing with solely using CWB dataset. When predicting whether it will rain after 1 hour, the overall AUCs increase 1.96%, 4.89%, and 9.77%. Furthermore, the forecasting model has better performances when considering dataset from multi-station if the target hour is closer to the 3rd hour.
    In terms of single-station regression problems, comparing with solely using CWB dataset, the overall RMSEs of predicting hourly rainfall at the mountain area decrease around 3.25%, 1.33% and 5.33% after 1 to 3 hours after using ZTD as a predictor. At the near-coast area, the overall RMSEs decrease 1.82%, 3.34% and 0.09%. Moreover, for the multi-station experiments, the rainfall predicting models for the mountain and the near-coast areas further indicate that they have better performances if excluded the dataset far from these areas.

    第1章 、緒論 1 第1節 、論文架構 1 第2節 、研究背景 1 第1項 、午後熱對流發展機制 2 第2項 、暖季弱綜觀環境判釋 4 第3項 、全球衛星導航系統與天頂向對流層延遲量 7 第3節 、前人文獻 8 第4節 、研究動機 13 第2章 、資料集 15 第1節 、空間資訊 15 第2節 、時間資訊 16 第3節 、資料統計 18 第3章 、研究方法 21 第1節 、深度學習 21 第1項 、向前傳遞 23 第2項 、計算損失值 24 第3項 、向後傳遞 24 第4項 、更新權重 25 第2節 、時間序列模型 26 第3節 、資料處理流程 28 第1項 、資料特徵縮放 28 第2項 、類別資料處理 29 第3項 、時間序列化資料 30 第4項 、採樣方法 30 第4節 、模型訓練流程 32 第5節 、模型驗證流程 32 第4章 、實驗與討論 37 第1節 、實驗設計 37 第2節 、分類實驗 38 第1項 、山區:預測曾文測站未來1-3小時是否降雨 38 第2項 、平原區:預測善化測站未來1-3小時是否降雨 45 第3項 、濱海區:預測臺南測站未來1-3小時是否降雨 52 第3節 、回歸實驗 59 第1項 、山區:預測曾文測站未來1-3小時之降雨量 59 第2項 、平原區:預測善化測站未來1-3小時之降雨量 74 第3項 、濱海區:預測臺南測站未來1-3小時之降雨量 89 第4節 、綜合結果 104 第5章 、結論 107 參考文獻 111

    Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres, 97(D14), 15787-15801.
    Chang, C.-P., & Chen, G. T.-J. (1995). Tropical Circulations Associated with Southwest Monsoon Onset and Westerly Surges over the South China Sea. Monthly Weather Review, 123(11), 3254-3267. Retrieved from https://journals.ametsoc.org/view/journals/mwre/123/11/1520-0493_1995_123_3254_tcawsm_2_0_co_2.xml. doi:10.1175/1520-0493(1995)123<3254:Tcawsm>2.0.Co;2
    Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
    Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
    LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
    Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS satellite surveying: John Wiley & Sons.
    Lin, P.-F., Chang, P.-L., Jou, B. J.-D., Wilson, J. W., & Roberts, R. D. (2011). Warm Season Afternoon Thunderstorm Characteristics under Weak Synoptic-Scale Forcing over Taiwan Island. Weather and Forecasting, 26(1), 44-60. Retrieved from https://journals.ametsoc.org/view/journals/wefo/26/1/2010waf2222386_1.xml. doi:10.1175/2010waf2222386.1
    Mohammed, R., Rawashdeh, J., & Abdullah, M. (2020). Machine learning with oversampling and undersampling techniques: overview study and experimental results. Paper presented at the 2020 11th international conference on information and communication systems (ICICS).
    O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458.
    Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy, 15, 247-251.
    Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and computing, 14(3), 199-222.
    Tan, P.-H., Soong, W.-K., Tsao, S.-J., Chen, W.-J., & Chen, I.-H. (2022). Impact of Lidar Data Assimilation on Simulating Afternoon Thunderstorms near Pingtung Airport, Taiwan: A Case Study. Atmosphere, 13(9), 1341. Retrieved from https://www.mdpi.com/2073-4433/13/9/1341.
    Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 26-31.
    Zadeh, L. A. (1988). Fuzzy logic. Computer, 21(4), 83-93.
    Zhang, C. J., Wang, H. Y., Zeng, J., Ma, L. M., & Guan, L. (2020). Tiny‐rainnet: a deep convolutional neural network with bi‐directional long short‐term memory model for short‐term rainfall prediction. Meteorological Applications, 27(5), e1956.
    Zhao, Q., Liu, Y., Yao, W., & Yao, Y. (2021). Hourly rainfall forecast model using supervised learning algorithm. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-9.
    朱瑞鼎、陳昭銘、張家治. (2017). 臺南地區弱綜觀天氣之降雨分析. 106年天氣分析與預報研討會.
    宋偉國、朱宗良. (2014). 台灣南部地區午後對流系統個案研究. 103年天氣分析與預報研討會.
    宋偉國、顏罡志. (2021). 應用剖風儀與數值模式於雷暴之研究. 110年天氣分析與預報研討會.
    林品芳、張保亮、周仲島. (2012). 弱綜觀環境下臺灣午後熱對流特徵及其客觀預報. 大氣科學, 40 卷, 77-108.
    張惠玲, & 林沛練. (1987). 台灣地區午後對流降水之研究. 研究, 8, E1.
    陳延昇. (2022). 評估區域性電離層資料同化模式對於精密單點定位之影響. 碩士論文.
    陳泰然、周鴻祺、廖佩娟、楊進賢. (2009). 暖季弱綜觀強迫下中北臺灣午後熱對流的氣候特徵. 大氣科學, 37 卷, 69-108.
    陳鈞澤、洪炯宗、廖宇慶、劉千義、鍾佳儒、葉大綱. (2021). 弱綜觀午後雷暴事件即時預報-機器學習方法. 110年天氣分析與預報研討會.
    黃國維. (2021). 臺灣地區天頂向對流層延遲量預測短期夏季降雨可行性評估. 碩士論文.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE