| 研究生: |
穆志欣 Mu, Zi-hsin |
|---|---|
| 論文名稱: |
模擬呼吸運動之假體機構設計 Design of Mechanical Phantom with Respiratory Simulation |
| 指導教授: |
黃才炯
Huang, T.J. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 放射線治療法 、生物擬真性 、呼吸調節法 、致動器 |
| 外文關鍵詞: | respiratory gating method, actuator, bio-fidelity, radiotherapy |
| 相關次數: | 點閱:127 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現代人罹患癌症的情況已經相當常見,各界都積極努力地尋求預防或治療癌症的方法。消極的作法是藉由藥物來控制癌細胞擴散的速度,積極方面則是藉由放射線治療法清除體內癌細胞。而本研究最主要的目標是從現有的放射線醫療器材進行改善創新,設計一套能夠應用在臨床上的醫療工具。
放射線治療法可細分成體內以及體外的治療方式,當中體外放射線治療法會使用呼吸調節法(respiratory gating method)輔助放射線治療。應用呼吸調節法的關鍵在於呼吸作用會造成腹腔體表產生明顯起伏的影響,而體內器官以及組織也會連帶產生移動的現象,如此一來要正確地定位出腫瘤位置難度更高。因此針對呼吸調節法之醫療輔助器材的設計,目的是製作出能產生近似呼吸運動的機構,以及可具有生物擬真性的人體模型。
因此本研究希望利用致動器來控制呼吸的頻率以及深度,以及使用複合材料製作具有生物擬真性的人體模型。其中致動器部分主要是由伺服馬達驅動凸輪機構所組成,人體模型則由放在機台上模擬呼吸的狀態。整個假體模型機構架設完後,便能夠利用實驗找出體表特徵點與體內腫瘤間運動的相關性。
Nowadays, there are more and more people getting cancer, so it is a need to find ways to prevent or cure this disease. We can use medicine to suppress the cancer passively, or use radiotherapy to kill the cancer actively. In this research, one set of medical equipment is proposed to assist the radiation treatment.
Radiotherapy can be divided into internal and external treatment, and the external treatment uses respiratory gating method to assist radiotherapy. The key point of applying respiratory gating method is to downplay the influences caused by respiratory motion and the motion of internal organs and tissue. These influences normally make it harder to locate tumor position and conduct the radiation treatment. In order to increase the clinical effect, the proposed device in this research has to reproduce respiratory motion like a human being. Therefore, one of the objectives of this thesis is to develop medical assisted equipment which is capable of duplicating respiratory motion and its effect for the tumor motion during treatment.
This research will utilize an actuator to control the frequency and amplitude of respiratory motion, and make a bio-fidelity human model by composite materials. The actuator is mainly composed of a servo-motor and a cam mechanism; the bio-fidelity human model is placed on the stage to simulate the respiratory motion. When the phantom mechanism is set, it is possible to find out the correlation between markers and tumors.
Ford, E. C., Mageras, G. S., Yorke, E., Rosenzweig, K. E., Wagman, R., and Ling, C. C., “ Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging.”Int. J. Radiation Oncology Biol. Phys., Vol.52, No.2, pp.522-531, (2002)
Fitzpatrick, M. J., Starkschall, G., Balter, P., Antolak, J. A., Guerrero, T., Nelson, C., Keall, P., and Radhe, M., “A novel platform simulating irregular motion to enhance assessment of respiration-correlated radiation therapy procedures.” J. Appl. Clin. Med. Phy. Vol.6, No.1, Winter (2005).
Gierga, D. P., Johanna Brewer, B. S., Sharp, G. C., Margrit Betke, Christopher G. Willett, and Chen, George T. Y. “The correlation between internal and external markers for abdominal tumors: implications for respiratory gating,” Int. J. Radiation Oncology Biol. Phys, Vol 61, No.5,pp.1551-1558,(2005)
Kashani, R., Lam, K., Litzenberg, D., and Balter, J., “A deformable phantom for dynamic modeling in radiation therapy,” Med. Phy. 34(1), January (2007).
Litzenberg, D. W., Hadley, S., Lam, W. Kwok L., and Balter, J. M., “precision translation stage for reproducing measured target volume motions,”Journal of applied clinical medical physics, Vol 8 No.3,,pp.2139-2146,(2001)
Lu, J., Guerrero, T. M., Munro, P., Jeung, A., Chi, Pai-Chun M., Balter, P., Zhu, X. R., Mohan, R., and Pan, T.,“Four-dimensional cone beam CT with adaptive gantry rotation and adaptive data sampling.”Medical Physics, Vol. 34, No.9, September (2007).
Li, J. C., Liu, W.S., Kuo, H. C., Chen, L. M., Huang, D., Hsu, C.W., and Chang, H. C., “Analysis on the variation of respirator organ motion and a preliminary feasibility study for a voice coaching technique to improve the reproducibility of respiratory cycle between treatments.” Therapeut. Radiol. Oncol. 9(1), pp1-12, (2002).
Ozhasoglu, C., and Murphy, M. J.,“Issue in respiratory motion compensation during external beam radiotherapy.”Int J Radiat Oncol Biol Phys 50:1389-399, (2002)
Perrin, B. A., Jordan, T. J., Hounsell, A. R., “The design and evaluation of a phantom for the audit of the treatment chain for prostate radiotherapy,”Radiotherapy and Oncology 60, pp.37-43,(2001)
Paul, N. S., Siewerdsen, J. H., Patsios, D., and Chung, T. –B., “Investigating the low-dose limits of multidetector CT in lung nodule surveillance.” Med. Phys. 4, No.9 , p3587-3589, September (2007).
Shimizu, S., Shirato, H., Xo, B., Kagei, K., Nishioka, T., Hashimoto, S., Tsuchiya, K., Aoyama, H., Miyasako, K.,“Three-dimensional movement of a liver tumor detected by high-speed magnetic resonance imaging,”Radiotherapy and Oncology Vol. 50, pp. 367-370, (1999).
Shirato, H., Shimizu, S., Kunieda, T., Kitamura, K., van Herk, M., Kagei, K., Nishioka, T., Hashimoto, S., Fujita, K., Aoyama, H., Tsuchiya, K., Kudo, K., and Miyasaka, K.,“Physical aspects of a real-time tumor-tracking system for gated radiotherapy.”Int. J. Radiat. Oncol. Biol. Phys. No.48, pp1187-1195, (2004)
Siebert, Frank-Andre´, Kohr, P., Kova´cs, G., “The design and testing of a solid phantom for the verification of a commercial 3D seed reconstruction algorithm,”Radiotherapy and oncology, No.74, pp165-175, (2005)
Vedam, S. S., Keall, P. J., Kini, V. R., and Mohan, R., “Determining parameters for respiration-gated radiotherapy.” Med. Phy. Vol.28, No.10, pp.2 139-2146, October (2001)
Vedam, S. S., Kini, V.R., Keall, P. J., Ramakrishnan, V., Mostafavi, H., and Mohan, R., “Quantifying the predictability of diaphragm motion using respiration with a noninvasive external marker.”Med. Phys. 30; p.505-513,(2003).
Wagman, R., Yorke, E., Ford, E., Giraud, P., Mageras, G., Minsky, B., and Rosenzweig, K., “Respiratory gating for liver tumors: use in does escalation,” Int. J. Radiation Oncology Biol. Phys, Vol 55, No.3. pp.659-668, (2003)
Yamada, Strength of biological materials, The Williams & Wilkins Company , Baltimore, (1970).