簡易檢索 / 詳目顯示

研究生: 劉家麟
Liu, Chia-Lin
論文名稱: 含雙羧酸與雙吡啶的亞鈷錯合物之水熱合成鑑定與構造
Structure and Determination of Hydrothermal Synthesis of Cobalt-Complexes of Dipyridine and Dicarboxylic Acid
指導教授: 許拱北
Shiu, Kom-Bei
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 126
中文關鍵詞: 亞鈷錯合物水熱合成雙羧酸雙吡啶
外文關鍵詞: Dipyridine, Hydrothermal Synthesis, Dicarboxylic Acid, Cobalt-Complexes
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文中七個過渡金屬化合物[Co(4,4’- BIPY)(1,4-BDC)]n (1)、[Co(BPE)(1,4-BDC)]n (2)、 [Co (1,4-BDC)(H2O)2(TMD)2]n (3)、{[Co(H2O)4(4,4’- BIPY)](1,4-BDC)}n (4)、{[Co(H2O)4(4,4’- BIPY)](BPDC)}n (5)、{[Co(H2O)4(4,4’- BIPY)]( FUC)}n.4nH2O (6)、[Co(H2O)4(2,2’- BIPY)](1,4-BDC) (7) ( BPE = 1,2-Bis(4-pyridyl)-ethane、1,4-BDC = Terephthalic acid、2,2’- BIPY = 2,2’- Bipyridine、TMD = 4,4’-Trimethylene-dipyridine、4,4’- BIPY = 4,4’-Bipyridine、BPDC = Biphenyl-4,4’-dicorboxylic acid、FUC = Fumaric acid ),利用水熱法合成,並將得到的構造鑑定。
      在化合物1和2中,亞鈷離子由當成橋基及螫合基的BDC所連結形成一個二維的架構,此二維的架構再由4,4’- BIPY及BPE連結形成一個三維的結構,此三維的結構為一個兩兩相互貫穿的構造。在化合物3,亞鈷離子由當單芽基的BDC所連結,另外再配位上兩個水分子及兩個TMD,形成一個一維的結構。化合物4~6中,亞鈷離子由4,4’- BIPY當成橋基連結,及配位四個水分子形成一個一維[Co(4,4’- BIPY)(H2O)4]2+主鏈,而未配位BDC、BPDC、FUC及結晶水則是利用氫鍵的作用以三明治的形式存在[Co(4,4’- BIPY)(H2O)4]2+鏈中,藉由氫鍵的作用,化合物4~6可當成三維結構的化合物。化合物7中亞鈷離子由2,2’- BIPY及四個水分子配位形成[Co(2,2’- BIPY)(H2O)4]2+單體,而BDC則是利用氫鍵的作用以三明治的形式存在於[Co(2,2’- BIPY)(H2O)4]2+之間,藉由氫鍵的作用,化合物7可以當成一維結構的化合物。磁性的測量的溫度由350~2 K,化合物1、4、5呈現反鐵磁性偶合作用,另外化合物3、7在高溫( 約100~350 K )範圍呈現鐵磁性,在化合物3、4、5、7中磁性的差異是由結構中BDC連結方式和分子內氫鍵的作用所造成,在此利用Curie-Weiss Law及雙核的公式來比對計算化合物1的交換偶合常數,以及利用Curie-Weiss Law來比對計算化合物3、4、5、7的交換偶合常數,所有化合物均作了IR光譜、UV-VIS光譜、原素分析、熱穩定度及發光等特性的鑑定。

     There are seven transition-metal complexes[Co(4,4’- BIPY)(1,4-BDC)]n (1)、[Co(BPE)(1,4-BDC)]n (2)、 [Co (1,4-BDC)(H2O)2(TMD)2]n (3)、{[Co(H2O)4(4,4’- BIPY)](1,4-BDC)}n (4)、{[Co(H2O)4(4,4’- BIPY)](BPDC)}n (5)、{[Co(H2O)4(4,4’- BIPY)]( FUC)}n.4nH2O (6)、[Co(H2O)4(2,2’- BIPY)](1,4-BDC) (7) ( BPE = 1,2-Bis(4-pyridyl)-ethane、1,4-BDC = Terephthalic acid、2,2’- BIPY = 2,2’- Bipyridine、TMD = 4,4’-Trimethylene-dipyridine、4,4’- BIPY = 4,4’-Bipyridine、BPDC = Biphenyl-4,4’-dicorboxylic acid、FUC = Fumaric acid ), have been hydrothermally prepared and structurally characterized .
     Each pair of metal atoms in compounds 1 and 2 are bridged by bis-bidentate and chelating bis-bidentate BDC ligands to form two-dimensional structures. Adjacent sheets are pillared by 4,4’- BIPY and BPE spacers into three-dimensional coordination network. Two-fold interpenetration of the above three-dimensional coordination networks results in stable crystal structures of compounds 1 and 2. In compound 3, cobalt ions are bridged by bis-monodentate BDC ligands and coordinated by two water molecules and two TMD to form one-dimensional structure. In compounds 4~6, cobalt ion bridged by 4,4’- BIPY and coordinated by four water molecules give rise to a one-dimensional [Co(4,4’- BIPY)(H2O)4]2+ chain, and the BDC, BPDC and FUC ligands and lattice water molecules are sandwiched between [Co(4,4’- BIPY)(H2O)4]2+ chain via hydrogen bonding form three-dimensional structures. In compound 7, cobalt ions are coordinated by 2,2’- BIPY and four water molecules form a monomer [Co(2,2’- BIPY)(H2O)4]2+ complexes, and BDC are sandwiched between [Co(2,2’- BIPY)(H2O)4]2+ via hydrogen bonding form one-dimensional structure. Variable-temperature ( 350~2 K ) magnetic susceptibility measurements and magnetization measurements at 2 K reveal that complexes 1, 4 and 5 have antiferromagnetic coupling while 3 and 7 have ferromagnetic coupling at high-temperature ( about 100~350 K ) range. Magnetostructural correlations have been made taking into consideration both the BDC bridging ligands and the existence of intermolecular hydrogen bonds in complexes 3, 4, 5 and 7. The magnetic exchange coupling between the cobalt centers for compounds 1, is analyzed on the basis of both the Curie-Weiss expression and a binuclear magnetic model and compounds 3, 4, 5 and 7 are analyzed on the basis of the Curie-Weiss expression. The synthesized products are characterized by IR spectroscopy, UV-VIS spectra, elemental ( EA ), thermogravimetric ( TGA ) and photoluminescence.

    摘要                IV Abstract               1 誌謝                III 目錄                 V 圖目錄               VII 表目錄                X 第一章 緒論             1 1-1背景介紹:             1 1-2水熱法簡介:           12 1-3研究動機:            16 第二章 實驗             17 2-1藥品:              17 2-2儀器/軟體            19 2-3實驗前處理:           19 2-4高分子化合物合成:        20 第三章 結果與討論:         27 3-1晶體結構描述           27 3-2紅外光吸收光譜之討論       45 3-3紫外可見光吸收光譜之討論     53 3-4化物合發射光光譜之討論      60 3-5化物合磁性測量          64 3-6化物合熱穩定度之討論       71 3-7化物合之結果討論         79 第四章 結論             84 參考文獻              86 附錄                89

    1. R. Szostak, Molecular Sieves, Van Nostrand Reinhold, New York, 1989.
    2. K. Cheetham, G. Ferey and T. Loiseau, Angew, Chem. Int. Ed., 1999, 38, 3269.
    3. Russell, V. A.; Evans, C. C.; Li, W.; M. D. Science 1997, 276, 575.
    4. Ranganathan, A,; Pedireddi, V. R.; Rao, C. N. R. J. J. Am. Chem. Soc. 1999, 121, 1752.
    5. Biradha, K.; Seward, C.; Zaworotko, M. J. Angew. Chem., Int. Ed. 1999, 38, 492.
    6. Yaghi, O. M.; Li, H. J. Am. Chem. Soc. 1995, 117, 10401.
    7. Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. J. Chem. Soc., Chem. Commun. 1994, 2755.
    8. Ino, I.; Zhong, J. C.; Munakata, M.; Kuroda-Sowa, T.; Maekawa, M.;Suenaga, Y.; Kitamori, Y. Inorg. Chem. 2000, 39, 4273.
    9. Kondo, M.; Shimamura, M.; Noro, S.; Minakoshi, S.; Asami, A.; Seki, K.; Kitagawa, S. Chem. Mater. 2000, 12, 1288.
    10. Hagrman, D.; Zubieta, C.; Rose, D. J.; Zubieta, J.; Haushalter, R. C.Angew. Chem., Int. Ed. 1997, 36, 873.
    11. Lu, J.; Paliwala, T.; Lim, S. C.; Yu, C.; Niu, T.; Jacobson, A. J. Inorg.Chem. 1997, 36, 923.
    12. MacGillivray, L. R.; Groeneman, R. H.; Atwood, J. L. J. Am. Chem.Soc. 1998, 120, 2676.
    13. Lu, J. Y.; Lawandy, M. A,; Li, J.; Yuen, T.; Lin, C. L. Inorg. Chem.
    1999, 38, 2695.
    14. Hagrmann, D.; Hammond, R. P.; Haushalter, R.; Zubieta, J. Chem.
    Mater. 1998, 10, 2091.
    15. Wang, Z.; Xionjg, R.-G.; Foxman, B. M.; Wilson, S. R.; Lin, W. Inorg. Chem. 1999, 38, 1523.
    16. Yaghi, O. M.; Li, H. J. Am. Chem. Soc. 1996, 118, 295-296.
    17. Gudbjartson, H.; Biradha, K.; Poirier, K. M.; Zaworotko, M. J. J. Am.Chem. Soc. 1999, 121, 2599.
    18. Gudbjartson, H.; Biradha, K.; Poirier, K. M.; Zaworotko, M. J. J. Am.Chem. Soc. 1999, 121, 2599.
    19. Venkataraman, D.; Lee, S.; Moore, J. S.; Zhang, P.; Hisch, K. A.;
    Gardner, G. B.; Covey, A. C.; Prentice, C. L. Chem. Mater. 1996, 8,
    2030.
    20. Jung, O.-S.; Park, S. H.; Kim, K. M.; Jang, H. G. Inorg. Chem. 1998,37, 5781.
    21. Withersby, M. A.; Blake, A. J.; Champness, N. R.; Cooke, P. A.;
    Hubberstey, P.; Li, W.-S.; Schröder, M. Inorg. Chem. 1999, 38, 2259.
    22. Lu, J.; Yu, C.; Niu, T.;PaliWala, T.; Crisci, G.; Somosa, F.; Jacobson, A. J. Inorg. Chem. 1998, 37, 4637.
    23. Yaghi, O. M.; Li, H.; Groy, T. L. Inorg. Chem. 1997, 36, 4292.
    24. Soma, T.; Yuge, H.; Iwamoto, T. Angew. Chem., Int. Ed. 1994, 33,
    1655.
    25. Subramanian, S.; Zaworotko, M. J. Angew. Chem., Int. Ed. 1995, 34, 2127.
    26. J. S. Seo, D. Whang, HLee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature, 2000, 404, 982.
    27. (a) K. S. Nin, M. P. Suh, J, Solid State chem. 2000, 152, 183; (b) V. V. Pavlishchuk, I. A. Koval, E. Goreshnik, A. W. Addison, G. A. Albada, J. Reedijk, Eur. J. Inorg. Chem. 2001, 297.
    28. W. Kobel, M. Hanack, Inorg. Chem. 1986, 25, 103.
    29. (a) K. S. Min, M. P. Suh, Chem. Eur. J. 2001, 7, 303; (b) S.-I. Noro, S. Kitagawa, M. Kondo, K. Seki, Angew. Chem. Int. Ed. Engl. 2000, 39, 2082.
    30. B. L. Chen, M. Eddaoudi, S. T. Hyde, M. O’Keefe, O. M. Yaghi, Science, 2001, 291, 1021.
    31. S. L. James, Chem. Soc. Rev., 2003, 32, 276.
    32. Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem., Int. Ed. 1999, 38, 2638-2684.
    33. Dong, Y.-B.; Smith, M. D.; Layland, R. C.; zur Loye, H,-C. Chem.
    Mater. 2000, 12, 1156.
    34. Dong, Y. -B.; Smith, M. D.; zur Loye, H,-C. Inorg. Chem. 2000, 39, 4927- 4935.
    35. Ciurtin, D. M.; Dong, Y.-B.; Smith, M. D.; Barclay, T.; zur Loye,
    H.-C. Inorg. Chem. 2001; ASAP Article.
    36. Biradha, K.; Hongo, Y.; Fujita, M. Angew. Chem., Int. Ed. 2000, 39, 3843-3 845.
    37. Li, H.; Davis, C. E.; Groy, T. L.; Kelley, D. G.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 2186-2187.
    38. Li, H.; Eddaoudi, M.; Groy, T. L.; Yaghi, O. M. J. Am. Chem. Soc.
    1998, 120, 5781-8752.
    39. Reineke, T. M.; Eddaoudi, M.; Fehr, M.; Kelley, D.; Yaghi, O. M. J. Am. Chem. Soc. 1999, 121, 1651-1657.
    40. Yaghi, O. M.; Li, H. Groy, T. L. J. Am. Chem. Soc. 1996, 118,
    9096-9101.
    41. Yaghi, O. M.; Davis, C. E.; Li, H. J. Am. Chem. Soc. 1997, 119,
    2861-2868.
    42. Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276- 279.
    43. Eddaoudi, M.; Li, H.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122,
    1391-1397.
    44. Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.;
    , M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319-330.
    45. Song Gao , Angew. Chem. Int. Ed., 2000, 39, 3644
    46. Bibudhendra Sarkar Inorg. Chem. ,2004, 43, 3338
    47. Li-Juan Zhang; Ji-Qing Xu; Zhan Shi; Xiao-Li Zhao; Tie-Gang Wang; Solid State chem. 2003, 32, 32-39.
    48. Lawandy, M. A.; Huang, X.; Wang, R.-J.; Li, J.; Lu, J. Y. Inorg. Chem. 1999, 38, 5410-5414.
    49. Nianqiang Wu; Lei Fu; Ming Su; Mohammed Aslam; Ka Chun Wong; Vinayak P. Dravid. Nono Letters. 2004, 4, 383.
    50. Chapman, M. E.; Ayyappan, P.; Foxman, B. M.; Yee, G. T.; Lin, W. Crystal Growth & Design, 2001, 1, 159-163.
    51. Deakin, L.; Arif, A. M.;Miller, J. S. Inorg. Chem. 1999, 38,
    5072-5077.
    52. Filipe A. Almeida Paz; Jacek K. Inorg. Chem. 2004, 43, 3882.
    53. Filipe A. Almeida Paz; Jacek, K. Inorg. Chem. 2004, 43, 3948.
    54. Chang, S. H.; Youngkyu D.. Inorg. Chem. 1998, 37, 4470.
    55. Hoong-Kun F.; S. Shnamuga, S. R.; Ren-Gen, X.; Jing-Lin, Z.; Zhi, Y.; Xiao- Zeng, Y. J. Chem. Soc., Dalton Trans., 1999, (12), 1915
    56. P. Losier; M. J. Eauorotko. Angew. Chem., Int. Ed. 1996, 35, 2779.
    57. Juan, C.; Giovanni, D. M.; José, L. S.; Rafael, R.; Juan, F.; Francesc, L.; Miguel, J.; Andrea, C. J. Chem. Soc., Dalton Trans., 1997, (11), 1915
    58. Yen-Hsiang, L.; Hui-Lien, T.; Yi-Long, L.; Yuh-Sheng, W.; Ju-Chun, W.; Kuang-Lieh, L. Inorg. Chem. 2001, 40, 6426.
    59. Zhi-Yong, F.; Xin-Tao, W.; Jing-Cao, D. Eur. J. Inorg. Chem. 2002, 2730.
    60. Jun, T.; Ming-Liang, T. Xiao-Ming, C. J. Chem. Soc., Dalton Trans., 2000, (20), 3669.
    61. Mau, S. R.; Ashutosh, G.; R. Bhattacharya; G. Mukhopadhyay; M. G. B. Drew and Joan, R. Dalton Trans., 2004, (2), 252.
    62. Jun, T.; Ming-Liang, T.; Jian-Xin, S.; Xiao-Ming C. Seik, W. Chem. Commun., 2000, (20), 2043.
    63. Chang, S. H.; Jung, H. Y.; Jeong, H. L.; Hyun, H. K. Eur. J. Inorg. Chem. 2005, 4818.
    64. Jean-Michel, R.; Norberto, M.; Pierre, R.; Angelo, S.; Antoine, S. Eur. J. Inorg. Chem. 2001, 2843.
    65. Subal, C. M.; Sanjit, K.; Ennio, Z.; Ken-ichi, O.; Joan, R.;Nirmalendu, R. C. Eur. J. Inorg. Chem. 2005, 4646.
    66. Licun, L.; Zhiliang, L.; Scott, S. T.; Daizheng, L.; Zonghui, J.;Shiping, Y. Eur. J. Inorg. Chem. 2003, 62.
    67. Zhicheng, Z.; Satoru, K.; and Noboru, K. Polyhedron 2005, 2102.
    68. A. Bencini; C. Benelli; D. Gatteschi; and C. Zanchini. Inorg. Chem. 1980, 19, 1301.
    69. Jacqueline, Z.; Olivier, K. Inorg. Chem. 1984, 23, 589.

    下載圖示 校內:2007-02-08公開
    校外:2007-02-08公開
    QR CODE