| 研究生: |
鄭鈞鴻 Cheng, Chun-Hung |
|---|---|
| 論文名稱: |
開發半球熱輻射性質量測系統與方向放射率量測系統 Development of a Hemispherical Radiative Properties Measurement System and Directional Emissivity Measurement System |
| 指導教授: |
陳玉彬
Chen, Yu-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 放射率 、半球熱輻射性質 、積分球 、傅立葉轉換紅外線光譜儀 |
| 外文關鍵詞: | emissivity, hemispherical radiative properties, integrating sphere, FTIR |
| 相關次數: | 點閱:120 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
物質的熱輻射性質包括:放射率、吸收率、反射率以及穿透率,過往利用特殊輻射性質開發的應用包含:太陽光電、紅外熱像、節能建材等;另一方面,材料熱處理與非接觸檢測溫度也需要深入了解材料的輻射性質。然而,商品化的輻射性質量測系統常受限於單一感測器無法捕捉到所有方向的能量,對於產生散射或繞射的樣本之輻射性質會有明顯誤差,也鮮有直接量測樣本的放射率之功能。因此,本研究第一目標係以單光儀、積分球與其他光學零組件建構一套半球熱輻射性質量測系統,可量測半球穿透率、反射率以及吸收率,波長範圍為 2.5 – 4.5 m以及 8 – 12 m。另一目標係以黑體爐、自行設計之加熱平台與傅立葉轉換紅外線光譜儀,建構一套量測方向放射率量測系統,波長範圍為 2.5 – 28.5 m。本文選擇鈉玻璃、氟化鈣玻片、藍寶石基板與金平板作為標準樣本,量測半球熱輻射性質與方向放射率,與數值模擬或文獻紀錄相當吻合,成功證實此二套系統之能力。
All objects emit radiation if it’s temperature higher than 0 K. Therefore, the related application of radiation is common around the world. In order to study the properties of radiation or to check whether the efficacy of the product fulfil the expectation or not, a radiative measurement system is necessary. The purpose of this study is to develop two radiative measurement system, Hemispherical Radiative Properties Measurement System and Directional Emissivity Measurement System. The former system consists of two sub-system, monochromatic light supply system and signal process system. The monochromatic light supply system includes the lamp, the light filter and the monochromator, which can provide the monochromatic light. The signal process system consist of the chopper, the integrating sphere and lock-in amplifier. The goal of the former system is to measurement the directional-hemispherical radiative properties, which can deal with the sample with the special surface that will let the incident light occur scattering or diffusion. The wavelength range of the system are 2.5 – 4.5 m and 8 – 12 m. The other system consists of black body, home-made heater and FTIR, which can measure the directional emissivity in specific temperature. The wavelength range of the system is 2.5 – 28.5m. The Soda-lime glass, CaF2, Al2O3, and gold are used as the reference to test the measurement system.
[1] X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, K. L. WongGordon, J. C. Travers, and J. RussellPhilip St, "Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre," Nat Photon, vol. 9, pp. 133-139, print 2015.
[2] J. R. Matthews, C. M. Payne, and J. H. Hafner, "Analysis of phospholipid bilayers on gold nanorods by plasmon resonance sensing and surface-enhanced raman scattering," Langmuir, vol. 31, pp. 9893-9900, 2015.
[3] A. H. Lay, X. Wang, M. S. C. Morgan, P. Kapur, H. Liu, C. G. Roehrborn, and J. A. Cadeddu, "Detecting positive surgical margins: utilisation of light-reflectance spectroscopy on ex vivo prostate specimens," BJU International, 2016.
[4] H. Keisuke, I. Katsunori, and A. Kunio, "Selective removal of atherosclerotic plaque with a quantum cascade laser in the 5.7 µm wavelength range," Japanese Journal of Applied Physics, vol. 54, p. 112701, 2015.
[5] A. La Spina, M. Burton, P. Allard, S. Alparone, and F. Muré, "Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna," Earth and Planetary Science Letters, vol. 413, pp. 123-134, 2015.
[6] F. J. Warren, M. J. Gidley, and B. M. Flanagan, "Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study," Carbohydrate Polymers, vol. 139, pp. 35-42, 2016.
[7] A. von Finck, T. Herffurth, S. Schröder, A. Duparré, and S. Sinzinger, "Characterization of optical coatings using a multisource table-top scatterometer," Applied Optics, vol. 53, pp. A259-A269, 2014.
[8] Q. Bao, X. Dong, D. Zhu, S. Lang, and X. Xu, "The feasibility of ocean surface current measurement using pencil-beam rotating scatterometer," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, pp. 3441-3451, 2015.
[9] H. J. Lee, A. C. Bryson, and Z. M. Zhang, "Measurement and modeling of the emittance of silicon wafers with anisotropic roughness," International Journal of Thermophysics, vol. 28, pp. 918-933, 2007.
[10] X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, "Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes," Nanotechnology, vol. 20, 2009.
[11] S. Kajita, T. Saeki, N. Yoshida, N. Ohno, and A. Iwamae, "Nanostructured black metal: novel fabrication method by use of self-growing helium bubbles," Applied Physics Express, vol. 3, 2010.
[12] E. Teran, E. R. Mendez, S. Enriquez, and R. Iglesias-Prieto, "Multiple light scattering and absorption in reef-building corals," Applied Optics, vol. 49, pp. 5032-5042, 2010.
[13] S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, "Surface-plasmon-induced light absorption on a rough silver surface," Applied Physics Letters, vol. 98, 2011.
[14] Z. P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, and S. Y. Lin, "Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array," Applied Optics, vol. 50, pp. 1850-1855, 2011.
[15] D. Fukutomi, K. Ishii, and K. Awazu, "Highly accurate scattering spectra of strongly absorbing samples obtained using an integrating sphere system by considering the angular distribution of diffusely reflected light," Lasers in Medical Science, vol. 30, pp. 1335-1340, 2015.
[16] Y.-B. Chen, Y.-C. Lee, Y.-F. Chang, Y.-H. Lin, and P.-H. Chen, "Tempering hemispherical radiative properties with a resonance compilation," Plasmonics, vol. 10, pp. 595-603, 2015.
[17] J.-H. Lin, Y.-T. Huang, T.-T. Li, C.-M. Lin, and C.-W. Lou, "Manufacture technique and performance evaluation of electromagnetic-shielding/far-infrared elastic warp-knitted composite fabrics," The Journal of The Textile Institute, vol. 107, pp. 493-503, 2016.
[18] Z. M. Zhang, Nano/microscale heat transfer. New York, NY: McGraw-Hill, 2007.
[19] Z. M. Zhang, B. K. Tsai, and G. Machin, Radiometric Temperature Measurements. Oxford: Elsevier, 2009.
[20] J. P. Derek, "The temperature variation of the emissivity of metals in the near infra-red," Proceedings of the Physical Society, vol. 59, p. 131, 1947.
[21] E. Schaub, "New calibration procedure for absolute temperature measurement on electronic devices, by means of thermoreflectance technique," Analytical Sciences/Supplements, vol. 17icpp, pp. s503-s506, 2002.
[22] M. F. Modest, Radiative heat transfer, 3rd ed. Oxford: Academic, 2013.
[23] N. Corporation. Infrared Emitter 6363. Available: https://www.newport.com/p/6363
[24] O. Coiporation, "Monochromator Illuminators." Available: http://assets.newport.com/pdfs/e5402.pdf
[25] N. Corporation. Power Supply. Available: https://www.newport.com/p/68938
[26] N. Corporation. Filter Wheels. Available: http://assets.newport.com/pdfs/e5533.pdf
[27] E. optics. Infrared Longpass Filter. Available: http://www.edmundoptics.com/optics/optical-filters/longpass-edge-filters/infrared-ir-longpass-filters/3326/
[28] E. optics. Diffraction Gratings. Available: http://www.edmundoptics.com/optics/gratings/
[29] A. Al-Azzawi, Physical Optics: Principles and Practices: CRC Press, 2006.
[30] THORLABS. Optical Chopper System. Available: https://www.thorlabs.hk/thorproduct.cfm?partnumber=MC2000
[31] N. Corporation. Off-Axis Replicated Parabolic Mirror. Available: https://www.newport.com/f/off-axis-replicated-parabolic-mirrors
[32] S. Adachi, The hand book on optical constants of metals: Word Scientific, 2012.
[33] G. Housego. Integrating Spheres. Available: http://www.ghinstruments.com/products/integrating-spheres/
[34] E.-O. Systems, "Cryogenic Receiver Modules."
[35] Signalrecovery. Model 5113 Low Noise Voltage Preamplifier. Available: http://www.signalrecovery.com/our-products/preamplifiers/5113.aspx
[36] SignalRecovery. Model 7265. Available: http://www.signalrecovery.com/our-products/lock-in-amplifiers/7265.aspx
[37] N. Instrument. NI 9215. Available: http://sine.ni.com/nips/cds/view/p/lang/zht/nid/208793
[38] N. Instrument. NI cDAQ-9171. Available: http://sine.ni.com/nips/cds/view/p/lang/zht/nid/209817
[39] T. I. Control. FY700. Available: http://www.fa-taie.com.tw/product.php?upid=1
[40] Isotech. PEGASUS R MODEL 970. Available: http://www.isotech.co.uk/infrared-calibrators/high-emissivity-blackbody-sources/pegasus-r-model-970
[41] T. Scientific. Nicolet 6700. Available: https://www.thermofisher.com/tw/zt/home.html
[42] Y. S. Touloukian, S. C. Saxena, and P. Hestermans, Thermophysical properties of matter — TPRC data series volume 11 viscosity. Purdue: Purdue Research Foundation, 1975.
[43] C. H. Fan and J. P. Longtin, "Laser-based measurement of liquid temperature or concentration at a solid–liquid interface," Experimental Thermal and Fluid Science, vol. 23, pp. 1-9, 2000.
校內:2021-08-25公開