簡易檢索 / 詳目顯示

研究生: 蔡鎮壕
Tsai, Zhen-Hou
論文名稱: 機腹布局之無分流隔板超音速進氣道設計暨氣動與匿蹤特性模擬分析
Design and Investigation of Aerodynamics and Stealth Characteristics for Ventral Diveterless Supersonic Inlet by Using Numerical Analysis
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 213
中文關鍵詞: 錐形流等熵壓縮無分流隔板超音速進氣道空氣動力學雷達散射截面匿蹤外型設計
外文關鍵詞: Conical flow, Isentropic compression, Diverterless Supersonic Inlet (DSI), Aerodynamics, Radar Cross Section (RCS), Stealth exterior design
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代的超音速進氣道不僅需具備捕獲氣流、減速壓縮空氣並維持高總壓恢復之氣流提供發動機正常運作,匿蹤進氣道外型同樣成為設計的一大考量。早期的進氣口構型通常以邊界層隔板(Diverter)裝置排除低能量之氣流,然而該裝置的設計造成設備維護成本及重量的增加,因此在目前的五代戰機為達到設備維護成本的減少,且保有良好的氣動性能及匿蹤特性的考量,取消邊界層隔板設計採用新的進氣口設計構型,該構型於進氣口安裝三維幾何曲面,搭配前掠外型的進氣道外罩,此新型進氣道構型稱之為無分流隔板超音速進氣道(Diverterless supersonic inlet, DSI),三維幾何曲面亦可稱之為壓縮面(Bump),其作用為壓縮空氣及排開近壁面處的低能量氣流,壓縮面的設計是利用錐形流(Conical flow)作為基礎流場進行流線追蹤生成的幾何曲面。如何在特定機身設計符合發動機需求的DSI進氣道,以及DSI外型對於氣動與匿蹤的性能分析為本研究的探討重點,本研究採用設計點馬赫數2.0的等熵錐(Isentropic cone)進行流線追蹤生成兩組不同外形的壓縮面,並利用流體力學工具(CFD)分析壓縮面在設計點的基準流場進行進氣道外罩及次音速管道設計,後續利用CFD模擬兩組DSI在設計點及設計點外的氣動特性,在滿足氣動特性的條件下利用高頻電磁模擬軟體(HFSS)計算雷達散射截面(Radar Cross Section, RCS)。研究結果顯示兩組DSI在設計點上能滿足本研究之發動機氣流量需求,等熵壓縮面的外型能提供進氣道良好的總壓恢復性能,使得兩組DSI在設計點2馬赫能維持90%以上的總壓恢復係數,匿蹤特性上結果表明兩組DSI在前向區域的RCS皆低於傳統邊界層隔板進氣道,DSI的壓縮面搭配S型進氣道能將雷達波在進氣道內多次反射,避免雷達對發動機入口產生強烈回波,且前掠外罩的外型亦能減少唇口處的邊緣繞射。本研究從兩組DSI之氣動與匿蹤結果發現壓縮面的高度差異影響進氣道的氣流捕獲面積、阻力及RCS的大小,在足夠的高品質氣流捕獲條件下,較小的壓縮面外型亦能維持良好總壓恢復,並能獲得更小的阻力與更低的RCS表現。

    Fifth-generation fighters feature a new air intake design called Divertless Supersonic Inlet (DSI), which provides excellent aerodynamics and stealth while reducing maintenance costs and aircraft weight. This study proposes the design of DSI in a specific forebody and matchs the performance requirements of the engine. And investagation the characteristic analysis of DSI on aerodynamics and stealth. DSI is composed of a three-dimensional (3D) bump and a cowling. The 3D bump geometry can be designed by tracing the streamlines released from curve forebody surface in conical flow with two different offsets, resulting in height differences for the bumps. Use CFD to analyze the flow field of the bump mounted on the fuselage and investigate flow field over the 3D bump before the cowling and the subsonic diffuser design. The flow field over the 3D bumps determines DSI cowling size, causing discrepancies in the capture area. The simulation results indicate that the two DSIs can satisfy the engine airflow requirements of this study at the design point. The isentropic compression surface can provide high total pressure recovery performance. Two DSIs in this study can provide a total pressure recovery coefficient of more than 90% at the design point Mach 2. The results of the stealth characteristics show that RCS of the two DSIs in the forward region is lower than the traditional boundary layer divert inlet. The bump of DSI and the S-shaped inlet can reflect the radar wave multiple times in the duct, avoiding the strong echo of the radar to the engine inlet. This study found from the aerodynamic and stealth results of the two DSIs that the height difference of the bump affects the airflow capture area, drag and RCS.

    摘要 i Abstract iii 誌謝 xii 目錄 xiii 表目錄 xvii 圖目錄 xviii 符號索引 xxix 第一章 緒論 2 1.1 前言 2 1.2 文獻回顧 4 1.2.1 進氣道發展 4 1.2.2 無分流隔板超音速進氣道 11 1.2.3 DSI相關研究 16 1.3 研究動機與目的 26 第二章 研究方法 27 2.1 理論基礎 27 2.1.1 進氣道與發動機 27 2.1.2 震波(Shock wave) 28 2.1.3 錐形流(Conical flow) 29 2.1.4 外部壓縮超音速進氣道 34 2.1.5 進氣道性能 39 2.1.6 統御方程式 47 2.1.7 紊流模型 48 2.1.8 雷達散射截面與雷達探測距離 49 2.1.9 雷達散射截面之散射機制及影響因素 55 2.1.10 雷達散射截面常見計算方法【53】 58 2.2 研究方法簡述 62 2.3 數值模擬軟體ANSYS Fluent及HFSS簡介 62 2.4 網格類型 63 2.5 電腦輔助設計軟體 65 2.6 CFD模擬環境設定 65 2.7 RCS模擬步驟及方法 66 2.8 DSI設計流程 68 第三章 進氣道外型設計與參數設定 70 3.1 進氣道設計點 70 3.2 等熵壓縮 71 3.3 等熵錐流場與流線追蹤 74 3.4 壓縮面過渡肩設計 79 3.5 基準流場 86 3.6 基準流場環境設定與邊界條件 87 3.7 網格獨立性 88 3.8 ANSYS HFSS RCS模擬驗證 94 3.9 等熵壓縮面(Bump)設計點模擬結果 96 3.9.1 Bump-A_T.S. 98 3.9.2 Bump-B_T.S. 110 3.9.3 Bump-A_T.S.與Bump-B_T.S.性能比較 120 3.10 進氣道外罩設計 126 3.11 次音速管道設計 133 3.12 DSI流場環境設定與邊界條件 138 第四章 結果與討論 141 4.1 DSI設計點(design point)模擬結果 141 4.1.1 DSI-A 141 4.1.2 DSI-B 149 4.2 DSI設計點外(off-design points)模擬結果 157 4.2.1 DSI-A於不同運作狀態 157 4.2.2 DSI-B於不同運作狀態 171 4.2.3 DSI-A不同馬赫數下性能 179 4.2.4 DSI-B不同馬赫數下性能 185 4.3 RCS模擬結果 191 4.4 DSI性能比較 198 第五章 結論與未來工作 203 5.1 結論 203 5.1.1 壓縮面 203 5.1.2 DSI 204 5.2 未來工作 205 參考文獻 207

    【1】 A. Sóbester, "Tradeoffs in jet inlet design: A historical perspective," Journal of aircraft, vol. 44, no. 3, pp. 705-717, 2007.
    【2】K. Oswatitsch, Pressure recovery for missiles with reaction propulsion at high supersonic speeds (the efficiency of shock diffusers),in Contributions to the Development of Gasdynamics: Springer, pp. 290- 323.1980.
    【3】 D. Welte, "Experimental analysis of a pitot-type air intake," Journal of Aircraft, vol. 23, no. 4, pp. 266-274, 1986.
    【4】 A. Ferri and L. M. Nucci, "The origin of aerodynamic instability of supersonic inlets at subcritical conditions," National Advisory Commitee for Aeronautics, vol. NACA-RM-L50K30, 1951.
    【5】 W. F. Davis and R. Scherrer, "Aerodynamic principles for the design of jet-engine induction systems,"National Advisory Commitee for Aeronautics, vol. NACA-RM-A55F16, 1956.
    【6】 H. F. Goelzer and E. M. Cortright Jr, "Investigation at Mach Number 1.88 of Half of a Conical-spike Diffuser Mounted as a Side Inlet with Boundary-layer Control" National Advisory Commitee for Aeronautics, vol. NACA-RM-E51G06, 1951.
    【7】 W. F. Imfeld, "Development program for the F-15 inlet," Journal of Aircraft, vol. 13, no. 4, pp. 286-291, 1976.
    【8】 I. H. Ibrahim, "Fluid flow studies of the F-5E and F-16 inlet ducts," Master of Engineering Thesis, Nanyang Technological University, School of Mechanical and Aerospace Engineering, 2008.
    【9】 T. Triantafyllou, T. Nikolaidis, M. Diakostefanis, and P. Pilidis, "Total pressure distortion levels at the aerodynamic interface plane of a military aircraft," The Aeronautical Journal, vol. 119, no. 1219, pp. 1147-1166, 2015.
    【10】T. Triantafyllou, T. Nikolaidis, M. Diakostefanis, and P. Pilidis, "Numerical simulation of the airflow over a military aircraft with active intake," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 231, no. 8, pp. 1369-1390, 2017.
    【11】 "米格-15戰鬥機 https://reurl.cc/GxO4a3".
    【12】 "二維斜坡進氣道 https://reurl.cc/k1gryn".
    【13】 "F-16戰隼戰鬥機 https://reurl.cc/0pR9a6".
    【14】 "米格-21戰鬥機 https://reurl.cc/Wr7R0x".
    【15】 P. Y. Ufimtsev, "Elementary edge waves and the physical theory of diffraction," Electromagnetics, vol. 11, no. 2, pp. 125-160, 1991.
    【16】 J. W. Hamstra and B. N. McCallum, "Tactical aircraft aerodynamic integration," Encyclopedia of aerospace engineering, 2010.
    【17】 S. Wong, E. Riseborough, G. Duff, and K. Chan, "Radar cross-section measurements of a full-scale aircraft duct/engine structure," IEEE transactions on antennas and propagation, vol. 54, no. 8, pp. 2436-2441, 2006.
    【18】 J. D. Kelly, "Configuration design for low RCS," presented at the Boeing Aerospace Company, Sept. 1975.
    【19】 H. Ling, R.-C. Chou, and S.-W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Transactions on Antennas and propagation, vol. 37, no. 2, pp. 194-205, 1989.
    【20】 M. C. Gridley and S. H. Walker, "Inlet and Nozzle Technology for 21st Century Fighter Aircraft," International Gas Turbine and Aexoengine Congress at Exhibition, 1996.
    【21】 E. Hehs., "JSF Diverterless Supersonic Inlet http://www.codeonemagazine.com/article.html?item_id=58," 2000.
    【22】 J. W. Hamstra and T. G. Sylvester, "System and Method for Diverting Boundary Air," United States, 1998.
    【23】 B. F. Lundy, J. D. Klinge, and B. C. Leland, "System, Method, and Apparatus for Designing Streamline Traced, Mixed Compression Inlets for Aircraft Engines," United States, 2006.
    【24】 J. Seddon and E. L. Goldsmith, Intake aerodynamics(AIAA Education Series). Blackwell science Boston, 1999.
    【25】 R. A. Stonier, "Stealth Aircraft and Technology from World-War-II to The Gulf. 2. Applications and Design," Sampe Journal, vol. 27, no. 5, pp. 9-18, 1991.
    【26】 C. Wiegand, "F-35 air vehicle technology overview," in 2018 Aviation Technology, Integration, and Operations Conference, p. 3368, 2018.
    【27】 P. Touzopoulos, D. Boviatsis, and K. C. Zikidis, "3D modelling of potential targets for the purpose of Radar Cross Section (RCS) prediction: based on 2D images and open source data," in 2017 International Conference on Military Technologies (ICMT), IEEE, pp. 636-642, 2017.
    【28】 K. Zikidis, A. Skondras, and C. Tokas, "Low observable principles, stealth aircraft and anti-stealth technologies," Journal of Computations & Modelling, vol. 4, no. 1, pp. 129-165, 2014.
    【29】 "F-35「閃電II」https://reurl.cc/anALn7".
    【30】 "殲-20 https://reurl.cc/A7Y4AK".
    【31】 "第六代未來戰機FCAS https://reurl.cc/M0V4yp".
    【32】M. Svensson, "A CFD Investigation of a Generic Bump and its Application to a Diverterless Supersonic Inlet," Master, Department of Management and Engineering, Linköping University, 2008.
    【33】 王嬌, 譚慧俊, 黃河峽, "不同波系配置的鼓包壓縮面引起的 激波/邊界層干擾特性," 航空動力學報, vol. 33, no. 2, pp. 372-382, 2018.
    【34】 黃偉聖, "錐形流推導之凸起物外型暨超音速進氣口設計與空氣動力模擬分析," 成功大學碩士學位論文, 2021.
    【35】楊應凱, "梟龍飛機 Bump 進氣道設計," 南京航空航天大學學報, vol. 39, no. 4, pp. 449-452, 2007.
    【36】 J. Masud, "Flow field and performance analysis of an integrated diverterless supersonic inlet," The Aeronautical Journal, vol. 115, no. 1170, pp. 471-480, 2011.
    【37】 W. Luo and Q. Wang, "Aerodynamic design of a forebody-integrated bump inlet with a S-Shape Diffuser," in International Forum of Energy Environmental Science and Materials, 2015.
    【38】 M. Soltani and R. Askari, "On the performance of a body integrated diverterless supersonic inlet," Aerospace Science and Technology, vol. 91, pp. 525-538, 2019.
    【39】 E. B. Saheby, H. Gouping, and A. Hays, "Design of top mounted supersonic inlets for a cylindrical fuselage," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 233, no. 8, pp. 2956-2979, 2019.
    【40】 姜浩, 昂海松, "F-35 戰鬥機氣動及隱身特性分析," 飛機設計, vol. 30, no. 6, pp. 1-10, 2010.
    【41】 姬金祖, 武哲, 劉戰合, "S 彎進氣道隱身設計中彎度參數研究," 西安電子科技大學學報, vol. 36, no. 4, pp. 746-750, 2009.
    【42】 S. S. M. Chung and S.-C. Tuan, "Efficacy of an S-Shaped Air Inlet on the Reduction of Front Bistatic Radar Cross Section of a Fighter Engine," Progress In Electromagnetics Research B, vol. 92, pp. 193-212, 2021.
    【43】 J. Mo, W. Fang, H. Xue, Y. Yan, and Z. Ma, "Accurate evaluation of RCS on the structure of aircraft Inlets," in 2013 Proceedings of the International Symposium on Antennas & Propagation, vol. 2: IEEE, pp. 815-818, 2013.
    【44】 陳震宇, "匿蹤戰機 外型設計對雷達散射截面分析," 成功大學碩士學位論文, 2020.
    【45】 謝雪明, 郭榮偉, "無隔道進氣道 RCS 特性實驗研究," 航空 學報, vol. 27, no. 2, pp. 193-197, 2006.
    【46】 樊華羽, 詹浩, 程詩信, and 米百剛, "基於 EHVI 加點準則的 DSI 進氣道氣動/隱身多目標代理優化方法研究," 西北工業大學學 報, vol. 5, 2019.
    【47】 J. D. Anderson Jr, Fundamentals of Aerodynamics, McGraw-Hill, New York, 1991.
    【48】 H. Ran and D. Mavris, "Preliminary design of a 2D supersonic inlet to maximize total pressure recovery," in AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences, p. 7357, 2005.
    【49】 J. F. Connors and R. C. Meyers, "Design criteria for axisymmetric and two-dimensional supersonic inlets and exits," 1956.
    【50】 J. Slater, "Design and analysis tool for external-compression supersonic inlets," in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 16, 2012.
    【51】 M. R. Soltani, J. S. Younsi, and M. Farahani, "Effects of boundary-layer bleed parameters on supersonic intake performance," Journal of Propulsion and Power, vol. 31, no. 3, pp. 826-836, 2015.
    【52】 M. R. Soltani, J. Sepahi Younsi, and A. Daliri, "Performance investigation of a supersonic air intake in the presence of the boundary layer suction," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 229, no. 8, pp. 1495-1509, 2015.
    【53】 D. Jenn, Radar and laser cross section engineering. American Institute of Aeronautics and Astronautics, Inc., 2005.
    【54】 H. Mendis, "Better meshing using ANSYS Fluent Meshing https://www.linkedin.com/pulse/better-meshing-using-ansys-fluent-hashan-mendis," , 2018.
    【55】 O. Younossi, M. V. Arena, R. M. Moore, M. Lorell, and J. Mason, "Military jet engine acquisition: technology basics and cost-estimating methodology," Rand Corp Santa Monica Ca, 2002.
    【56】 MIT Lincoln Laboratory, Radar: Introduction to Radar Systems https://www.ll.mit.edu/outreach/radar-introduction-radar-systems-online-course, 2018.
    【57】 J. Hawkins, "YF-16 inlet design and performance," Journal of Aircraft, vol. 13, no. 6, pp. 436-441, 1976.
    【58】 C. Lee and C. Boedicker, "Subsonic diffuser design and performance for advanced fighter aircraft," in Aircraft design systems and operations meeting, p. 3073. , 1985.

    無法下載圖示 校內:2027-08-09公開
    校外:2027-08-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE