| 研究生: |
張璿智 Zhang, Xuan-Chih |
|---|---|
| 論文名稱: |
國產材非膠合集成牆體的側推行為 Lateral behavior of non-glued laminated timber wall made of domestic wood in Taiwan |
| 指導教授: |
葉玉祥
Yeh, Yu-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 非膠合集成牆體 、緊固件 、延展性 、側向行為 |
| 外文關鍵詞: | non-glued laminated timber wall, transversal fastener, ductility, lateral behavior |
| 相關次數: | 點閱:117 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要嘗試開發國產材製非膠合集成牆體並測試其力學性能,試體集成元使用國產柳杉製作,再以國產自攻螺絲鎖固製成,試驗方式則以千斤頂側推受測牆體,依所得之數據繪製成荷載-位移曲線圖,以計算其剛度、強度、延展性等力學性能,並探討該種集成工法之牆體與膠合牆體於力學及變形上的特性。
藉由文獻回顧可得知:非膠合集成構件緊固件數量及間距的差異會顯著影響其彈性模數及強度等力學行為,因此本研究牆體參數設定主要分為三類,即膠合牆體、自攻螺絲鎖入間距4公分之非膠合牆體與自攻螺絲鎖入間距8公分之非膠合牆體。每種參數各含3組試體,試體尺寸為寬30.4 cm x 高130 cm x 厚15 cm,試驗方式以每分鐘4毫米的速率將千斤頂加載於試體底座上方63公分處,直至曲線圖線型趨於穩定。
實驗結果顯示,剛度及強度方面,膠合牆體是所有類型牆體中最優異的,分別約為1.4kN/mm與21.6kN,不過延展性是所有類型牆體中最低的,約為4.43,該結果為高剛度膠合材的典型力學特性。兩種不同螺絲間距的非膠合牆體則於降伏強度及極限強度的表現上非常相近,約為11.3kN與17.4kN,另外,4公分螺絲間距的牆體於試驗後表現出最佳的延展性,約為5.25。以上現象說明牆體螺絲間距的差異並不會影響牆體強度,但較密集的螺絲配置可有效提高牆體吸收及耗散能量的能力,此特性可由延展性強弱的表現印證之。破壞方面,所有膠合試體於試驗後破壞處皆集中於接點的部分,如鋼製底座等部位,此現象通常容易發生於膠合構件上;非膠合試體的破壞位置則大多集中於底部集成元上,該現象說明非膠合材對於銜接構件的保護及能量的吸收皆較膠合材優異,凸顯出非膠合工法的優勢。試體製作方面,膠合構件由於需要夾具的鎖固及黏合靜置,因此製作場地常侷限於加工廠,非膠合構件則因製作上僅以緊固件鎖固即可,因此可於工廠預製亦可於建案現場施作,工作度彈性較高。
綜合以上結果,以4公分螺絲間距集成的非膠合牆體在各項力學表現上是相對優異的,說明該間距配置是較為理想的,且加工製作時亦不會因過於密集而使螺絲鎖固時發生木材劈裂等現象,充分表現出實務上應用的可行性。
This study mainly attempts to develop a non-glue laminated wall made of domestic wood and test its mechanical properties. All specimens are made of Japanese cedar, composed of 8 laminas with thickness of 3.8 cm and totally possess the dimension of 15 × 30.4 × 130 cm. The specimens comprise three laminated types: glued laminated walls, non-glued laminated walls with a self-tapping screw locking interval of 4 cm, and non-glued laminated walls with a self-tapping screw locking interval of 8 cm. Each type contains 3 sets of samples and designed to research the seismic and wind performance under lateral loading.
The experimental results indicate that in terms of stiffness and ultimate load, the glued laminated wall is the best of all types of walls, about 1.4kN/mm and 21.6kN respectively, but the ductility of 4.43 is the lowest among these types, which shows typical behavior of GLT. The two types of non-glued walls with different screw spacing are very similar in yield strength and ultimate strength, about 11.3kN and 17.4kN. In addition, the wall with 4 cm screw spacing shows the best ductility after the test. , about 5.25.
Comparing the above three types of walls, the non-glued laminated walls with 4 cm screw spacing are relatively good in various mechanical performances, indicating that this spacing configuration is ideal, and the spacing will not make the laminas broken while locking the screws. It can also be implemented at the construction site, which fully shows the possibility of practical application.
[1] 中華民國國家標準. (2014). 結構用集成材 Structural glued-laminated timber.
In(Vol. CNS 11031).
[2] 內政部營建署 (2011). 木構造建築物設計及施工技術規範
[3] 陳拓男 (2010). 磚砌牆體面內水平加載-位移研究與磚造歷史建築耐震評估應用。國立成功大學建築研究所博士論文
[4] 黃軍豪 (2006). 歷史建築磚牆體玻璃纖維補強研究。國立成功大學建築研究所博士論文
[5] 商博淵 (2010). 臺灣傳統木構造「減榫」力學行為與模擬生物劣化之研究。國立成功大學建築研究所碩士論文
[6] 游蕙安 (2019). 橫貫補強材接點的剪力行為與解析公式的驗證。國立成功大學建築研究所碩士論文
[7] ASTM D1761-20 (2020). Standard Test Methods For Mechanical Fasteners In Wood And Wood-Based Materials. Pennsylvania, USA:ASTM International.
[8] EN 1995-1-1 (2004). Eurocode 5:Design of Timber Structures – Part 1-1:General – Common rules and rules for buildings, The Eourpean Union Per Regulation.
[9] Smith, I., Asiz, A., Snow, M., Chiu, YH. (2006). Possible Canadian/ISO approach deriving design values from test data. Florence, Italy: International Council for Research and Innovation in Building and Construction, CIB-W18/39-17-1, 395-406.
[10] Concu, G. (2019). Timber Buildings and Sustainability. IntechOpen. 10.5772/intechopen.78428
[11] Chen, Z., Popovski, M. (2020). Mechanics-based analytical models for balloon-type cross-laminated timber (CLT) shear walls under lateral loads. Engineering Structures, 208, 109916.
[12] Stazi, F., Serpilli, M., Maracchini, G., Pavone, A. (2019). An experimental and numerical study on CLT panels used as infill shear walls for RC buildings retrofit. Construction and Building Materials, 211, 605-616.
[13] O'Loinsigh, C., Oudjene, M.. Ait-Aider, H., Fanning, P., Pizzi, A.. Shotton, E., Meghlat.E. -M..(2012). Experimental study of timber-to-timber composite beam usingwelded-through wood dowels. Construction and Building Materials, 36, 245-250.
[14] Sotayo, A., Bradley, D., Bather, M., Oudjene, M., EI-Houjeyri, I., Guan, Z. (2020). Development and structural behaviour of adhesive free laminated timber beams and cross laminated panels. Construction and Building Materials, 259, 119821.
[15] Houjeyri, EI., Thi, V-D., Oudjene, M., Khelifa, M., Rogaume, Y., Sotayo, A., Guan, Z. (2019). Experimental investigations on adhesive free laminated oak timber beams and timber-to-timber joints assembled using thermo-mechanically compressed wood dowels. Construction and Building Materials, 222, 288-299.
[16] Bocquet, J.-F., Pizzi, A., Despres, A., Mansouri, H., Resch, L., Michel, D., Letort, F. (2007). Wood joints and laminated wood beams assembled by mechanically-welded wood dowels. Journal of Adhesion Science and Technology, 21, 301-317.
[17] Zhang, C., Lee, G., Lam, F. (2018). Study of Massive Timber Walls based on NLT and Post Laminated LVL. Timber Engineering and Applied Mechanics Laboratory, 1901-2424.
[18] Xue, J., Ren, G., Qi, L., Zhang, X. (2020). Lateral behavior of glued-laminated timber frame infilled with light-wooden-frame wall hybrid system: Experimental and numerical analysis. Structures, 30, 352-367.