簡易檢索 / 詳目顯示

研究生: 吳孟修
Wu, Meng-Xiu
論文名稱: 具六氮聯三伸萘之有機電極材料應用於鋰離子電池
Hexaazatriphenylene-based Organic Electrode Material for Lithium-ion Batteries
指導教授: 柯碧蓮
Watchareeya Kaveevivitchai
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 92
中文關鍵詞: 大規模儲能系統鋰離子電池有機化合物正極具六氮聯三伸萘之有機電池材料
外文關鍵詞: Large-scale energy storage systems, Lithium-ion batteries, Organic materials, Cathode, Hexaazatriphenylene-based materials
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於全球能源的需求快速增長,人們極需更高效率和效能的儲能系統,若要大量生產能源儲存元件,成本、毒性、環境影響是重要的考量因素。有機電極材料極具潛力,可取代鋰離子電池中正極材料所含較昂貴且有毒的無機化合物。有機材料可產自價廉且豐富的再生資源,對環境較友善,其氧化還原電位也可經由設計不同官能基而調整,以達到更好的電化學性質。
    六氮聯三伸萘(HAT)及其衍生物是具有相當潛力的化合物,且已證實在鋰離子電池中具有氧化還原活性。為了進一步提高 HAT 化合物的電化學性能,在此項研究中,我們藉由將 1,4-萘醌基團引入 HAT 架構形成中 HATNQ,使其增加氧化還原活性點,並且能夠進行高達 12 個電子移轉的反應。當 HATNQ 作為正極材料,在電流密度 200 mA g-1下可以獲得 426 mAh g-1 的可逆電容量,且在高電流密度 10 A g1下仍可達到 232 mAh g-1 HATNQ 所延伸的共軛系統導致更好的電子遷移率,氧化還原可逆性,出色的倍率性能和循環壽命。本研究藉由改變電極製備條件,以最佳化電池性能,並且利用數種原位與非原位鑑定分析技術呈現鋰離子電池在充放電過程中的氧化還原機制。

    Due to the fast-growing demand for energy worldwide, mankind is in great need for more efficient and powerful energy storage systems. Mass production of these energy storage units has led to the importance of cost, toxicity, and environmental impact. Organicbased electrode materials are one of the most promising candidates to replace the inorganicbased compounds commonly used as cathodes in Li-ion batteries, most of which contain costly and toxic metals. Organic compounds come from cheap and abundant renewable resources. They are also environmentally friendly. Organic electrodes can be designed to have different functional groups, which allow the redox potential to be fine-tuned. As a result,better electrochemical properties can be achieved. Hexaazatriphenylene (HAT) and itsderivatives are a promising group of compounds which have been shown to possess redox activities in Li-based batteries. In order to further improve the electrochemical performance of HAT compounds, in this work, the number of redox active sites has been increased by introducing 1,4-naphthoquinone group into the HAT core to form a functionalized extended derivative, HATNQ, capable of undergoing twelve-electron reaction. When used as cathode,HATNQ can achieve a reversible capacity as high as 426 mAh g-1 at 200 mA g-1, and at an extremely high rate of 10 A g-1, a capacity of 232 mAh g-1 still can be achieved. Furthermore,the extended conjugated system of HATNQ leads to better electronic mobility, redox reversibility, excellent rate capability, and superior cycle life. The electrode preparation conditions have been varied to optimize the battery performance. Several characterization techniques both ex-situ and in-situ have been used to reveal the redox mechanism of discharge/charge process in LIBs.

    Table of Contents 摘要 ........................................... i Abstract.............................................. ii Acknowledgments ....................................... iii List of Tables ........................................ vii List of Figures......................................... i Chapter 1 Introduction................................... 1 1.1 Inorganic vs. Organic Rechargeable Batteries ...................................... 1 1.2 Classification of Organic Lithium-ion Batteries ................................... 5 1.2.1 Conducting Polymers .................................................................... 6 1.2.2 Organosulfur Compounds ........................................................... 11 1.2.3 Radical Polymers......................................................................... 13 1.2.4 Organic Conjugated Carbonyl Compounds................................. 17 1.2.5 Heteroaromatic Compounds........................................................ 21 1.2.6 Molecular Design and Optimization ........................................... 28 1.3 Literature Review of Hexaazatriphenylene-based Materials............... 29 1.3.1 Introduction ................................................................................. 29 1.3.2 Triquinoxalinylene Materials ...................................................... 30 1.3.3 Hexacyanotripyradinylene........................................................... 31 1.3.4 Charge Transfer Complexes ........................................................ 33 1.3.5 Heteroaromatic Triquinoxalinylene............................................. 34 1.3.6 Hexaazatriphenylene-based Polymers......................................... 36 1.3.7 Hexaazatriphenylene-based Materials/Graphene Oxide ............. 38 1.3.8 Hexaazatriphenylene-hexacarbonitrile Carbon Fibers ................ 40 1.4 Background of Study ........................................................................... 42 1.4.1 Definition..................................................................................... 42 1.4.2 Batteries Design........................................................................... 44 1.6 Motivation and Purpose....................................................................... 47 Chapter 2 Hexaazatriphenylene-based Organic Electrode Materials ...................... 49 2.1 Introduction ......................................................................................... 49 2.2 Experimental Section........................................................................... 50 2.2.1 Materials ...................................................................................... 50 2.2.2 Preparation of HATNQ Cells ...................................................... 51 2.2.3 Materials Characterization........................................................... 51 2.2.4 Electrode Mechanistic Studies..................................................... 52 2.3 Results and Discussion ........................................................................ 53 2.3.1 Powder X-ray Diffraction(PXRD)............................................... 53 2.3.2 Raman Spectroscopy ................................................................... 54 2.3.3 Fourier-Transform Infrared Spectroscopy (FT-IR) ..................... 54 2.3.4 Optimization of Electrochemical Performance ........................... 55 2.3.5 Electrochemical Properties of HATNQ....................................... 68 2.3.6 Ex-situ and In-situ Analysis ........................................................ 74 2.3.6.1 Ex-situ and In-situ Raman Spectroscopy ......................... 74 2.3.6.2 Ex-situ FT-IR Spectroscopy ............................................. 76 2.3.6.3 Ex-situ XPS Spectroscopy................................................ 78 2.3.6.4 Ex-situ EPR ...................................................................... 81 2.3.6.5 Ex-situ Scanning Electron Microscopy (SEM) ................ 82 Chapter 3 Conclusions............................... 84 References .................................... 85

    (1) Janoschka, T.; Hager, M. D.; Schubert, U. S. Powering up the Future: Radical Polymers for Battery Applications. Adv. Mater. 2012, 24, 6397–6409.
    (2) Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603.
    (3) Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.
    (4) Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y.; Yao, Y. Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. Chem. Rev. 2020, DOI: 10.1021/acs.chemrev.9b00482.
    (5) Lee, S.; Kwon, G.; Ku, K.; Yoon, K.; Jung, S. K.; Lim, H. D.; Kang, K. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries. Adv. Mater. 2018, 30, 1704682.
    (6) Wu, Z.; Xie, J.; Xu, Z. J.; Zhang, S.; Zhang, Q. Recent Progress in Metal-Organic Polymers as Promising Electrodes for Lithium/Sodium Rechargeable Batteries. J. Mater. Chem. A 2019, 7, 4259–4290.
    (7) Williams, D. L.; Byrne, J. J.; Driscoll, J. S. A High Energy Density Lithium/Dichloroisocyanuric Acid Battery System. J. Electrochem. Soc. 1969, 116, 2–4.
    (8) Schuldiner, S.; Nigrey, P. J.; Macinnes, D.; Nairns, D. P.; Macdiarmid, A. G.; Heeger, A. J. Lightweight Rechargeable Storage Batteries Using Polyacetylene ( CH )x as the Cathode‐Active Material. J. Electrochem. Soc. 1982, 129, 1270–1271.
    (9) Song, Z. P.; Zhou, H. S. Towards Sustainable and Versatile Energy Storage Devices: an Overview of Organic Electrode Materials. Energy Environ. Sci. 2013, 6, 2280–2301.
    (10) Zhu, L. M.; Lei, A. W.; Cao, Y. L.; Ai, X. P.; Yang, H. X. An All-Organic Rechargeable Battery Using Bipolar Polyparaphenylene as a Redox-Active Cathode and Anode. Chem. Commun. 2013, 49, 567–569.
    (11) Matsunaga, T.; Daifuku, H.; Nakajima, T.; Kawagoe, T. Development of Polyaniline-Lithium Secondary Battery. Polym. Adv. Technol. 1990, 1, 33–39.
    (12) Goto, F.; Abe, K.; Okabayashi, K.; Yoshida, T.; Morimoto, H. The Polyaniline/Lithium Battery. J. Power Sources 1987, 20, 243–248.
    (13) Vlad, A.; Arnould, K.; Ernould, B.; Sieuw, L.; Rolland, J.; Gohy, J.-F. Exploring the Potential of Polymer Battery Cathodes with Electrically Conductive Molecular Backbone. J. Mater. Chem. A 2015, 3, 11189–11193.
    (14) Kaneto, K.; Yoshino, K.; Inuishi, Y. Characteristics of Polythiophene Battery. Jpn. J. Appl. Phys. 1983, 22, L567–L568.
    (15) Tang, J.; Kong, L.; Zhang, J.; Zhan, L.; Zhan, H.; Zhou, Y. H.; Zhan, C. Solvent-Free, Oxidatively Prepared Polythiophene: High Specific Capacity as a Cathode Active Material for Lithium Batteries. React. Funct. Polym. 2008, 68, 1408–1413.
    (16) Liu, M.; Visco, S. J.; De Jonghe, L. C. Electrochemical Properties of Organic Disulfide/Thiolate Redox Couples. J. Electrochem. Soc. 1989, 136, 2570–2575.
    (17) Speer, M. E.; Kolek, M.; Jassoy, J. J.; Heine, J.; Winter, M.; Bieker, P. M.; Esser, B. Thianthrene-Functionalized Polynorbornenes as High-Voltage Materials for Organic Cathode-Based Dual-Ion Batteries. Chem. Commun. 2015, 51, 15261–15264.
    (18) Nakahara, K.; Iwasa, S.; Satoh, M.; Morioka, Y.; Iriyama, J.; Suguro, M.; Hasegawa, E. Rechargeable Batteries with Organic Radical Cathodes. Chem. Phys. Lett. 2002, 359, 351–354.
    (19) Nakahara, K.; Iriyama, J.; Iwasa, S.; Suguro, M.; Satoh, M.; Cairns, E. J. Cell Properties for Modified PTMA Cathodes of Organic Radical Batteries. J. Power Sources 2007, 165, 398–402.
    (20) Yokoji, T.; Kameyama, Y.; Maruyama, N.; Matsubara, H. High-Capacity Organic Cathode Active Materials of 2,2'-bis-p-benzoquinone Derivatives for Rechargeable Batteries. J. Mater. Chem. A 2016, 4, 5457–5466.
    (21) Sieuw, L.; Gohy, J.-F.; Vlad, A.; Jouhara, A.; Quarez, E.; Auger, C.; Poizot, P. A H-bond Stabilized Quinone Electrode Material for Li-Organic Batteries: The Strength of Weak Bonds. Chem. Sci. 2019, 10, 418–426.
    (22) Han, X.; Chang, C.; Yuan, L.; Sun, T.; Sun, J. Aromatic Carbonyl Derivative Polymers as High-Performance Li-ion Storage Materials. Adv. Mater. 2007, 19, 1616–1621.
    (23) Lee, M.; Hong, J.; Lopez, J.; Sun, Y. M.; Feng, D. W.; Lim, K.; Chueh, W. C.; Toney, M. F.; Cui, Y.; Bao, Z. N. High-Performance Sodium-Organic Battery by Realizing Four-Sodium Torage in Disodium Rhodizonate. Nat. Energy 2017, 2, 861–868.
    (24) Gottis, S.; Barres, A. L.; Dolhem, F.; Poizot, P. Voltage Gain in Lithiated Enolate-Based Organic Cathode Materials by Isomeric Effect. ACS Appl. Mater. Interfaces 2014, 6, 10870–10876.
    (25) Renault, S.; Geng, J. Q.; Dolhem, F.; Poizot, P. Evaluation of Polyketones with N-Cyclic Structure as Electrode Material for Electrochemical Energy Storage: Case of Pyromellitic Diimide Dilithium Salt. Chem. Commun. 2011, 47, 2414–2416.
    (26) Luo, Z.; Liu, L.; Zhao, Q.; Li, F.; Chen, J. An Insoluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries. Angew. Chem., Int. Ed. 2017, 56, 12561–12565.
    (27) Liang, Y.; Zhang, P.; Yang, S.; Tao, Z.; Chen, J. Fused Heteroaromatic Organic Compounds for High-Power Electrodes of Rechargeable Lithium Batteries. Adv. Energy Mater. 2013, 3, 600–605.
    (28) Sakaushi, K.; Nickerl, G.; Wisser, F. M.; Nishio-Hamane, D.; Hosono, E.; Zhou, H. S.; Kaskel, S.; Eckert, J. An Energy Storage Principle using Bipolar Porous Polymeric Frameworks. Angew. Chem., Int. Ed. 2012, 51, 7850–7854.
    (29) Tian, B. B.; Ding, Z. J.; Ning, G. H.; Tang, W.; Peng, C. X.; Liu, B.; Su, J.; Su, C. L.; Loh, K. P. Amino Group Enhanced Phenazine Derivatives as Electrode Materials for Lithium Storage. Chem. Commun. 2017, 53, 291–2917.
    (30) Xie, J.; Rui, X. H.; Gu, P. Y.; Wu, J. S.; Xu, Z. C. J.; Yan, Q. Y.; Zhang, Q. C. Novel Conjugated Ladder-Structured Oligomer Anode with High Lithium Storage and Long Cycling Capability. ACS Appl. Mater. Interfaces 2016, 8, 16932–16938.
    (31) Hong, J.; Lee, M.; Lee, B.; Seo, D. H.; Park, C. B.; Kang, K. Biologically Inspired Pteridine Redox Centres for Rechargeable Batteries. Nat. Commun. 2014, 5, 5335.
    (32) Xie, J.; Chen, W. Q.; Wang, Z. L.; Jie, K. C. W.; Liu, M.; Zhang, Q. C. Synthesis and Exploration of Ladder-Structured Large Aromatic Dianhydrides as Organic Cathodes for Rechargeable Lithium-Ion Batteries. Asian J. Chem. 2017, 12, 868–876.
    (33) Jouhara, A.; Quarez, E.; Dolhem, F.; Armand, M.; Dupre, N.; Poizot, P. Tuning the Chemistry of Organonitrogen Compounds for Promoting All-Organic Anionic Rechargeable Batteries. Angew. Chem., Int. Ed. 2019, 58, 15680–15684.
    (34) Peng, C. X.; Ning, G. H.; Su, J.; Zhong, G. M.; Tang, W.; Tian, B. B.; Su, C. L.; Yu, D. Y.; Zu, L. H.; Yang, J. H.; Ng, M. F.; Hu, Y. S.; Yang, Y.; Armand, M.; Loh, K. P. Reversible Multi-Electron Redox Chemistry of Pi-conjugated N-Containing Heteroaromatic Molecule-Based Organic Cathodes. Nat. Energy 2017, 2, 17074.
    (35) Heiska, J.; Nisula, M.; Karppinen, M. Organic Electrode Materials with Solid-State Battery technology. J. Mater. Chem. A 2019, 7, 18735–18758.
    (36) Han, C.; Li, H.; Shi, R.; Zhang, T.; Tong, J.; Li, J.; Li, B. Organic Quinones Towards Advanced Electrochemical Energy Storage: Recent Advances and Challenges. J. Mater. Chem. A 2019, 7, 23378–23415.
    (37) Nasielskihinkens, R.; Benedekvamos, M.; Maetens, D.; Nasielski, J. A New Heterocyclic Ligand for Transition-Metals-1,4,5,8,9,12-Hexaazatriphenylene and Its Chromium Carbonyl-Complexes. J. Organomet. Chem. 1981, 217, 179–182.
    (38) Matsunaga, T.; Kubota, T.; Sugimoto, T.; Satoh, M. High-performance Lithium Secondary Batteries Using Cathode Active Materials of Triquinoxalinylenes Exhibiting Six Electron Migration. Chem. Lett. 2011, 40, 750–752.
    (39) Hanyu, Y.; Sugimoto, T.; Ganbe, Y.; Masuda, A.; Honma, I. Multielectron Redox Compounds for Organic Cathode Quasi-Solid State Lithium Battery. J. Electrochem. Soc. 2014, 161, A6–A9.
    (40) Nakashima, K.; Shimizu, T.; Kamakura, Y.; Hinokimoto, A.; Kitagawa, Y.; Yoshikawa, H.; Tanaka, D. A New Design Strategy for Redox-Active Molecular Assemblies with Crystalline Porous Structures for Lithium-Ion Batteries. Chem. Sci. 2020, 11, 37–43.
    (41) Kapaev, R. R.; Zhidkov, I. S.; Kurmaev, E. Z.; Stevenson, K. J.; Troshin, P. A. Hexaazatriphenylene-Based Polymer Cathode for Fast and Stable Lithium-, Sodium- and Potassium-Ion Batteries. J. Mater. Chem. A 2019, 7, 22596–22603.
    (42) Wang, J. Q.; Tee, K.; Lee, Y. H.; Riduan, S. N.; Zhang, Y. G. Hexaazatriphenylene Derivatives/GO Composites as Organic Cathodes for Lithium Ion Batteries. J. Mater. Chem. A 2018, 6, 2752–2757.
    (43) Yan, R.; Josef, E.; Huang, H.; Leus, K.; Niederberger, M.; Hofmann, J. P.; Walczak, R.; Antonietti, M.; Oschatz, M. Understanding the Charge Storage Mechanism to Achieve High Capacity and Fast Ion Storage in Sodium-Ion Capacitor Anodes by Using Electrospun Nitrogen-Doped Carbon Fibers. Adv. Funct. Mater. 2019, 29, 1902858–1902871.
    (44) Zhuang, B.; Fujitsuka, M.; Tojo, S.; Cho, D. W.; Choi, J.; Majima, T. Influence of Charge Distribution on Structural Changes of Aromatic Imide Derivatives upon One-Electron Reduction Revealed by Time-Resolved Resonance Raman Spectroscopy during Pulse Radiolysis. J. Phys. Chem. A 2018, 122, 8738–8744.
    (45) Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Liu, H.; Wang, Y.; Lei, Z.; Sun, W.; Lv, L.-P.; Zhang, Y. Boosting Lithium Storage in Covalent Organic Framework Via Activation of 14-Electron Redox Chemistry. Nat. Commun. 2018, 9, 576.
    (46) Zhu, Y.; Chen, P.; Zhou, Y.; Nie, W.; Xu, Y. New Family of Organic Anode without Aromatics for Energy Storage. Electrochim. Acta 2019, 318, 262–271.
    (47) Deng, W. W.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Graphene-Wrapped Na2C12H6O4 Nanoflowers as High Performance Anodes for Sodium-Ion Batteries. Small 2016, 12, 583–587.
    (48) Deng, Q. J.; Xue, J.; Zou, W.; Wang, L. P.; Zhou, A. J.; Li, J. Z. The Electrochemical Behaviors of Li2C8H4O6 and Its Corresponding Organic Acid C8H6O6 as Anodes for Li-Ion Batteries. J. Electroanal. Chem. 2016, 761, 74–79.
    (49) Breda, S.; Reva, I. D.; Lapinski, L.; Nowak, M. J.; Fausto, R. Infrared Spectra of Pyrazine, Pyrimidine and Pyridazine in Solid Argon. J. Mol. Struct. 2006, 786, 193–206.
    (50) Shi, R.; Liu, L.; Lu, Y.; Wang, C.; Li, Y.; Li, L.; Yan, Z.; Chen, J. Nitrogen-Rich Covalent Organic Frameworks with Multiple Carbonyls for High-Performance Sodium Batteries. Nat. Commun. 2020, 11, 178.
    (51) Peng, C.; Ning, G.-H.; Su, J.; Zhong, G.; Tang, W.; Tian, B.; Su, C.; Yu, D.; Zu, L.; Yang, J.; Ng, M.-F.; Hu, Y.-S.; Yang, Y.; Armand, M.; Loh, K. P. Reversible Multi-Electron Redox Chemistry of π-Conjugated N-Containing Heteroaromatic Molecule-Based Organic Cathodes. Nat. Energy 2017, 2, 17074.
    (52) Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. A New Class of Solvent-in-Salt Electrolyte for High-Energy Rechargeable Metallic Lithium Batteries. Nat. Commun. 2013, 4, 1481–1490.
    (53) Dahbi, M.; Ghamouss, F.; Tran-Van, F.; Lemordant, D.; Anouti, M. Comparative Study of EC/DMC LiTFSI and LiPF6 Electrolytes for Electrochemical Storage. J. Power Sources 2011, 196, 9743–9750.
    (54) Wang, W. K.; Wang, Y.; Huang, Y. Q.; Huang, C. J.; Yu, Z. B.; Zhang, H.; Wang, A. B.; Yuan, K. G. The Electrochemical Performance of Lithium-Sulfur Batteries with LiClO4 DOL/DME Electrolyte. J. Appl. Electrochem. 2010, 40, 321–325.
    (55) Liang, X.; Wen, Z. Y.; Liu, Y.; Wu, M. F.; Jin, J.; Zhang, H.; Wu, X. W. Improved Cycling Performances of Lithium Sulfur Batteries with LiNO3-Modified Electrolyte. J. Power Sources 2011, 196, 9839–9843.
    (56) Chang, C. H.; Li, A. C.; Popovs, I.; Kaveevivitchai, W.; Chen, J. L.; Chou, K. C.; Kuo, T. S.; Chen, T. H. Elucidating Metal and Ligand Redox Activities of a Copper-Benzoquinoid Coordination Polymer as the Cathode for Lithium-Ion Batteries. J. Mater. Chem. A 2019, 7, 23770–23774.
    (57) Xue, Q.; Li, D.; Huang, Y.; Zhang, X.; Ye, Y.; Fan, E.; Li, L.; Wu, F.; Chen, R. Vitamin K as a High-Performance Organic Anode Material for Rechargeable Potassium Ion Batteries. J. Mater. Chem. A 2018, 6, 12559–12564.
    (58) Guo, R.; Wang, Y.; Heng, S.; Zhu, G.; Battaglia, V. S.; Zheng, H. Pyromellitic Dianhydride: A New Organic Anode of High Electrochemical Performances for Lithium Ion Batteries. J. Power Sources 2019, 436, 226848–226857.
    (59) Nam, K. W.; Beldjoudi, Y.; Kwon, T.-W.; Stoddart, J. F.; Kim, H.; Kim, D. J.; Stoddart, J. F.; Stoddart, J. F. Redox-Active Phenanthrenequinone Triangles in Aqueous Rechargeable Zinc Batteries. J. Am. Chem. Soc. 2020, 142, 2541–2548.
    (60) Mao, M.; Hou, S.; Gao, T.; Fan, X.; Cui, C.; Deng, T.; Wang, C.; Mao, M.; Cui, C.; Zhang, M.; Ma, J.; Mao, M.; Yue, J.; Tong, Y.; Yang, G.; Suo, L.; Luo, C.; Pollard, T. P.; Borodin, O. A Pyrazine-Based Polymer for Fast-Charge Batteries. Angew. Chem., Int. Ed. 2019, 58, 17820–17826.
    (61) Man, Z. M.; Li, P.; Zhou, D.; Zang, R.; Wang, S. J.; Li, P. X.; Liu, S. S.; Li, X. M.; Wu, Y. H.; Liang, X. H.; Wang, G. X. High-Performance Lithium-Organic Batteries by Achieving 16 Lithium Storage in Poly(imine-anthraquinone). J. Mater. Chem. A 2019, 7, 2368–2375.
    (62) Hong, J.; Lee, B.; Seo, D.-H.; Lee, M.; Park, C. B.; Kang, K. Biologically Inspired Pteridine Redox Centres for Rechargeable Batteries. Nat. Commun. 2014, 5, 5335.
    (63) Lee, M.; Hong, J.; Seo, D.-H.; Nam, D. H.; Nam, K. T.; Kang, K.; Park, C. B. Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energy-Storage Compound. Angew. Chem., Int. Ed. 2013, 52, 8322–8328.
    (64) Gu, S.; Wu, S.; Cao, L.; Li, M.; Qin, N.; Zhu, J.; Wang, Z.; Li, Y.; Li, Z.; Chen, J.; Lu, Z. Tunable Redox Chemistry and Stability of Radical Intermediates in 2D Covalent Organic Frameworks for High Performance Sodium Ion Batteries. J. Am. Chem. Soc. 2019, 141, 9623–9628.
    (65) Jiang, Q.; Xiong, P.; Liu, J.; Xie, Z.; Wang, Q.; Yang, X. Q.; Hu, E.; Cao, Y.; Sun, J.; Xu, Y.; Chen, L. A Redox-Active 2D Metal-Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angew. Chem., Int. Ed. 2020, 59, 5273–5277.

    下載圖示 校內:2025-06-24公開
    校外:2025-06-24公開
    QR CODE