| 研究生: |
陳威任 Chen, Wei-Ren |
|---|---|
| 論文名稱: |
含異向性彈性/壓電/磁電彈異質之應力分析 Stress Analysis of Inclusion with Anisotropic Elastic, Piezoelectric, and/or Magneto-Electro-Elastic Materials |
| 指導教授: |
胡潛濱
Hwu, Chyan-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 史磋公式 、異向性彈性力學 、異質 、壓電材料 、壓磁材料 、磁電彈材料 |
| 外文關鍵詞: | Stroh formalism, anisotropic elasticity, inclusion, piezoelectric material, magneto-electro-elastic material |
| 相關次數: | 點閱:240 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二維異向性彈性力學的史磋公式(Stroh formalism)可以藉由擴張相關矩陣維度大小而延伸應用到壓電材料及磁電彈材料,由於多數文獻僅探討單一種材料相關孔洞、裂縫或異質等平板問題,本文利用此特性,提出一種矩陣調適法來處理同時含有異向性彈性材料、壓電材料、壓磁材料及磁電彈材料的異質問題。利用此方式,在文獻中針對異向性彈性材料異質問題推導出的解析解、邊界元素法及邊界有限元素法皆不須重新推導,即可直接應用在多種材料同時使用的異質問題,並融入本師門研究團隊所編寫的結構分析軟體(Anisotropic Elastic Plate_Hwu, AEPH)。
最後設計三種問題來探討異質與基材交界處的應力集中因子、電位移、磁通量及裂縫的應力強度因子,包括:(1)壓磁材料板含有一個異向性彈性材料或壓電材料異質、(2)壓磁材料板含有一個異向性彈性材料或壓電材料異質和一個裂縫、(3)壓磁材料或磁電彈材料板含有兩個異向性彈性材料或壓電材料異質,並經由與其他解析解和有限元素軟體ANSYS進行比對證明本方式的可行性及正確性。此調整方式亦可應用在其他多材料問題之分析及實際應用。
Based upon the special feature that Stroh formalism for two-dimensional anisotropic elasticity can be extended to the piezoelectric and magneto-electro-elastic materials by expanding the related matrix dimension, an adaptable adjustment technique is proposed to deal with the problems with simultaneous existence of anisotropic, piezoelectric and magneto-electro-elastic materials. With this technique, the analytical solutions, boundary element methods and boundary-based finite element method developed previously for the problems of anisotropic elastic inclusion can now be employed to most of the related inclusion problems with simultaneous existence of these three different kinds of materials. This technique also be applied to AEPH, the structure engineering analysis software of our group. To verify the correctness of the proposed method, three typical examples: (1) one anisotropic/piezoelectric inclusion in piezomagnetic matrix, (2) one anisotropic/piezoelectric inclusion and one crack in piezomagnetic matrix, (3) two anisotropic/piezoelectric inclusions in piezomagnetic/magneto-electro-elastic matrix, are presented and compared with the other existing solutions. This technique also can be applied to analysis of other multi-material problems and some practical applications.
[1] Lekhnitskii, S.G., Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, Inc., San Francisco. 1963.
[2] Lekhnitskii, S.G., Anisotropic Plates. Gordon and Breach Science Publishers, New York. 1968.
[3] Ting, T.C.T., Anisotropic Elasticity: Theory and Applications. Oxford Science Publications, New York. 1996.
[4] Hwu, C., Anisotropic Elastic Plates. Springer, New York. 2010.
[5] Rahman, M., The Isotropic Ellipsoidal Inclusion With a Polynomial Distribution of Eigenstrain. J. Appl. Mech. 69, 593-601. 2002.
[6] Hwu, C., Yen, W.J., On the Anisotropic Elastic Inclusions in Plane Elastostatics. J. Appl. Mech. 60, 626-632. 1993.
[7] Onaka, S., Kobayashi, N., Kato, M., Two-dimensional analysis on elastic strain energy due to a uniformly eigenstrained supercircular inclusion in an elastically anisotropic material. Mech. Mater. 34, 117-125. 2002.
[8] Ru, C.Q., 2003. Eshelby inclusion of arbitrary shape in an anisotropic plane or half-plane. Acta Mech. 160, 219-234.
[9] Dong, C.Y., Lo, S.H., Cheung, Y.K., Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium. Comput. Methods Appl. Mech. Eng. 192, 683-696. 2003.
[10] Pasternak, I.M., Plane problem of elasticity theory for anisotropic bodies with thin elastic inclusions. J. Math. Sci. 186, 31-47. 2012.
[11] Liang, Y.C., Hwu, C., Electromechanical Analysis of Defects in Piezoelectric Materials. Smart Mater. Struct. 5, 314-320. 1996.
[12] Pak, Y.E., Elliptical inclusion problem in antiplane piezoelectricity: Implications for fracture mechanics. Int. J. Eng. Sci. 48, 209-222. 2010.
[13] Sun, L.G., Xu, K.Y., Pan, E., Inclusion of arbitrary polygon with graded eigenstrain in an anisotropic piezoelectric full plane. Int. J. Solids Struct. 49, 1773-1785. 2012.
[14] Mishra, D., Park, C.Y., Yoo, S.H., Pak, Y.E., Closed-form solution for elliptical inclusion problem in antiplane piezoelectricity with far-field loading at an arbitrary angle. Eur. J. Mech. A/Solids 40, 186-197. 2013.
[15] Yue, Y.M., Xu, K.Y., Chen, Q.D., Pan, E., Eshelby problem of an arbitrary polygonal inclusion in anisotropic piezoelectric media with quadratic eigenstrains. Acta Mech. 226, 2365-2378. 2015.
[16] Jiang, X., Pan, E., Exact solution for 2D polygonal inclusion problem in anisotropic magnetoelectroelastic full-, half, and bimaterial-planes. Int. J. Solids Struct. 41, 4361-4382. 2004.
[17] Lee, Y.G., Zou, W.N., Pan, E., Eshelby’s problem of polygonal inclusions with polynomial eigenstrains in an anisotropic magneto-electro-elastic full plane. Proc. R. Soc. A 471(2179), 20140827. 2015.
[18] Hsieh, M.C., Hwu, C., Extended Stroh-Like Formalism for Magneto-Eletro-Elastic Composite Laminates. International Conference on Computational Mesomechanics associated with Development and Fabrication of Use-Specific Materials, Tokyo, Japan, pp. 325-332. 2003.
[19] Chung, M.Y., Ting, T.C.T., The Green function for a piezoelectric piezomagnetic magnetoelectric anisotropic elastic medium with an elliptic hole or rigid inclusion. Phil. Mag. 72, 405-410. 1995.
[20] Liang, J., Han, J., Wang, B., Du, S., Electroelastic Modelling of Anisotropic Piezoelectric Materials with an Elliptic Inclusion. Int. J. Solids Struct. 32, 2989-3000. 1995.
[21] Lu, P., Williams, F.W., Green Functions of Piezoelectric Material with an Elliptic Hole or Inclusion. Int. J. Solids Struct. 35, 651-664. 1998.
[22] Jinxi, L., Xianglin, L., Yongbin, Z., Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int. J. Eng. Sci. 39, 1405-1418. 2001.
[23] Hwu, C., Liao, C., A Special Boundary Element for the Problems of Multi-Holes, Cracks and Inclusions. Comput. Struct. 51, 23-31. 1994.
[24] Chatzidai, N., Giannousakis, A., Dimakopoulos, Y., Tsamopoulos, J., On the elliptic mesh generation in domains containing multiple inclusions and undergoing large deformations. J. Comput. Phys. 228, 1980-2011. 2009.
[25] Lee, J., Ku, D., Mai, A., Elastic analysis of a half-plane with multiple inclusions using volume integral equation method. Eng. Anal. Bound. Elem. 35, 564-574. 2011.
[26] Zhou, K., Chen, W.W., Keer, L.M., Ai, X., Sawamiphakdi, K., Glaws, P., Wang, J., Multiple 3D inhomogeneous inclusion in a half space under contact loading. Mech. Mater. 43, 444-457. 2011.
[27] Dai, M., Gao, C.F., Ru, C.Q., Uniform stress fields inside multiple inclusions in an elastic infinite plane under plane deformation. Proc. R. Soc. A 471(2177), 20140933. 2015.
[28] Hwu, C., Huang, S.T., Li, C.C., Boundary-based Finite Element Method for Two-Dimensional Anisotropic Elastic Solids with Multiple Holes and Cracks. Eng. Anal. Bound. Elem. 79, 13-22. 2017.
[29] Yen, W.J., Hwu, C., Interaction Between Dislocations and Anisotropic Elastic Elliptical Inclusions. J. Appl. Mech. 61, 548-554. 1994.
[30] Yen, W.J., Hwu, C., Liang, Y.K., Dislocation Inside, Outside, or on the Interface of an Anisotropic Elliptical Inclusion. J. Appl. Mech. 62, 306-311. 1995.
[31] Hwu, C., Liang, Y.K., Yen, W.J., Interaction Between Inclusions and Various Types of Cracks,” Int. J. Fract. 73, 301-323. 1995.
[32] Li, H., Yang, J., Li, Z., An approximate solution for the plane stress mode I crack interaction with an inclusion of arbitrary shape. Eng. Fract. Mech. 116, 190-196. 2014.
[33] Hao, W., Tang, C., Yuan, Y., Ma, Y., Study on the effect of inclusion shape on crack-inclusion interaction using digital gradient sensing method. J. Adhes. Sci. Technol. 29, 2021-2034. 2015.
[34] Chen, Y.C., Hwu, C., Green’s Functions for Anisotropic/Piezoelectric Bimaterials and Their Applications to Boundary Element Analysis. Comput. Model. Eng. Sci. 57, 31-50. 2010.
[35] Siboni, M.H., Castaneda, P.P., A magnetically anisotropic, ellipsoidal inclusion subjected to a non-aligned magnetic field in an elastic medium. C. R. Mecanique 340, 205-218. 2012.
[36] Rogacheva, N.N., The Theory of Piezoelectric Shells and Plates. CRC Press, London. 1994.
[37] Soh, A., Liu, J., On the Constitutive Equations of Magnetoelectroelastic Solids. J. Intell. Mater. Syst. Struct. 16, 597-602. 2005.
[38] Gerasoulis, A., The Use of Piecewise Quadratic Polynomials for the Solution of Singular Integral Equations of Cauchy Type. Comput. Math. Appl. 8, 15-22. 1982.
[39] Brebbia, C.A., Telles, J.C.F., Wrobel, L.C., Boundary Element Techniques. Springer-Verlag, New York. 1984.
[40] 王芮菁, 異向性彈性力學視窗軟體之設計與優化. 國立成功大學航空太空工程研究所, 台灣. 2016.
[41] Hwu, C., Hsu, C.L., Chen, W.R., Corrective Evaluation of Multi-valued Complex Functions for Anisotropic Elasticity. submitted for publication. 2017.
[42] Liu, Y.X., Wan, J.G., Liu, J.M., Nan, C.M., Effect of magnetic bias field on magnetoelectric coupling in magnetoelectric composites. J. Appl. Phys. 94, 5118-5122. 2003.
[43] Hwu, C., Polygonal holes in anisotropic media. Int. J. Solids Struct. 29, 2369–2384. 1992.
[44] Muskhelishvili, I.N., Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff Publishers, Groningen. 1954.
[45] Erdogan, F., Gupta, G.D., Ratwani, M., Interaction between a circular inclusion and an arbitrarily oriented crack. J. Appl. Mech. 41, 1007-1013. 1974.