簡易檢索 / 詳目顯示

研究生: 張惠華
Chang, Hui-Hua
論文名稱: 情緒疾患之藥物基因體研究
Pharmacogenetic Studies in Mood Disorders
指導教授: 簡伯武
Gean, Po-Wu
共同指導教授: 陳柏熹
Chen, Po-See
學位類別: 博士
Doctor
系所名稱: 醫學院 - 藥物生物科技研究所
Institute of Biopharmaceutical Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 196
中文關鍵詞: 雙極性疾患重度憂鬱症丙戊酸抗憂鬱劑藥物基因體學單一位點核甘酸多型性
外文關鍵詞: bipolar disorder, major depressive disorder, valproate, antidepressant, Pharmacogenomics, SNP
相關次數: 點閱:143下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究目的:藥物基因體學是以基因的變異如何影響每一病患對於藥物的治療反應之研究。以單一位點核甘酸多型性(Single nucleotide polymorphisms)之偵測,可運用於評估臨床上病患對於藥物的反應或副作用與基因多型性的關聯性研究。本研究中,第一個研究目的為:在雙極性疾患(bipolar disorder)之病患中,以單一位點核甘酸多型性來探討與valproate有關之代謝異常的關聯性;第二個研究目的為:在重度憂鬱症(major depressive disorder)之病患中,運用單一位點核甘酸多型性來探討與抗憂鬱劑治療反應之關聯性,並預測病患之治療反應。
    研究方法:本研究於國立成功大學醫學院附設醫院招募年滿18歲以上65歲以下符合第四版精神疾病的診斷(DSM-IV)定義為雙極性疾患、或重度憂鬱症之患者。第一部份研究,於雙極性疾患之病患中,檢測GNB3 C825T單一位點核甘酸多型性與代謝指標。第二部份研究中,於重度憂鬱症之病患中,檢測單一位點核甘酸多型性,包含與藥物療效相關基因:HTR2A T102C, HTR1A C(-1019)G, THP1 A218C, SLC6A4 rs25533, GNB3 C825T, BDNF G196A、及與藥物動力學相關基因:CYP 2C19*2 G681A, CYP 2C19*3 G636A, CYP 2D6*10 C100T, ABCB1 C3435T, ABCB1 G2677T, ABCB1 C1236T,同時檢測血中高度敏感C反應蛋白(high sensitive C-reactive protein)的濃度、與社會支持評量表(social support scales)。最後,將結合與治療反應相關的因子,以類神經網路預測重度憂鬱症病患之治療反應。
    研究結果:第一部份研究中,首先確定valproate用於治療雙極性疾患會提高病患患有代謝異常的風險。且發現雙極性疾患之病患於GNB3 C825T單一位點核甘酸多型性帶有T allele者,對於valproate造成之代謝異常有較低的風險。第二部份研究中,首先發現TPH1 A218C 之單一位點核甘酸多型性的基因型頻率於健康受試者與重度憂鬱症患者中有顯著不同。與藥物療效相關基因中,經過藥物分組後BDNF G196A與TPH1 A218C之單一核苷酸多型性顯著才與治療反應有關;與藥物動力學相關基因中,不論病患是服用fluoxetine或venlafaxine ,ABCB1 G2677T與CYP 2C19*3 G636A之單一核苷酸多型性顯著與治療反應有關。此外,服藥前病患之高度敏感C反應蛋白之濃度高低、及社會支持量表之分數高低均與抗憂鬱劑之治療反應有關。此外,由建立類神經網路發現,病患於危急時獲得之社會支持、高度敏感C反應蛋白之濃度、與BDNF G196A之單一核苷酸多型性,為預測第二週抗憂鬱劑治療反應的主要敏感因子。
    結論:運用藥物基因體學之方法,以情緒疾患為例,有助於探討其與藥物相關副作用或療效之關係。藉由藥物基因體學並結合相關因子,未來將可望達成個人化醫學的目標。

    Objective: Pharmacogenomics is the study of how gene variations influence the responses of a patient to treatment with medications. Using single nucleotide polymorphisms (SNPs) is one of the approaches to determine the contribution of genes to adverse effects or effectiveness of medications. The first objective of the current study was to use information about genetic variants to minimize the potential adverse effects, valproate (VPA)-related metabolic abnormalities, in bipolar disorder (BD) patients. The secondary objective was to use genetic data to identify treatment response of antidepressant in patients with major depressive disorder (MDD).
    Methods: All of the BD or MDD patients of the study, aged 18-65, were recruited from the National Cheng Kung University Hospital. In the first part, we measured metabolic indexes in BD patients, and investigated the possible associations between the polymorphism of GNB3 C825T and VPA-induced metabolic abnormalities. In the secondary part, we measured treatment response by using the change scores of the 21-item Hamilton Rating Scale for Depression biweekly. We also investigated the SNPs (pharmacodynamic (PD) genes: HTR2A T102C, HTR1A C(-1019)G, THP1 A218C, SLC6A4 rs25533, GNB3 C825T, and BDNF G196A; pharmacokinetic (PK) genes: CYP 2C19*2 G681A, CYP 2C19*3 G636A, CYP 2D6*10 C100T, ABCB1 C3435T, ABCB1 G2677T, and ABCB1 C1236T), high sensitive C-reactive protein (CRP), and social support scales (SSS). Further, the combination of theses factors to predict the individual antidepressant treatment responses was established by using artificial neural network (ANN).
    Results: In the first part, VPA treatment for BD may increase the risk of metabolic disturbances, and BD patients who are carriers of T allele of the GNB3 C825T polymorphism have a lower risk for VPA-induced metabolic abnormalities compared to BD patients who are carriers of homozygous C allele. Moreover, VPA exposure and GNB3 C825T polymorphism have significant interactions with metabolic indexes. In the secondary part, the genotype and allele frequencies of TPH1 A218C polymorphism were different between healthy controls and MDD patients. Among PD genes, the genotype of BDNF G196A was marginally to associate with the response of venlafaxine treatment, while the polymorphisms of TPH1 A218C were associated with fluoxetine treatment. Among PK genes, ABCB1 G2677T, and CYP 2C19*3 were associated with response rates regardless of receiving fluoxetine or venlafaxine treatment. In addition to genetic factors, both of initial CRP levels and SSS were correlated with treatment response. Furthermore, a model of ANN indicated that available social support in crisis status, CRP, and genotypes of BDNF G196A were top sensitive to antidepressant treatment response in MDD patients at week 2.
    Conclusion: The investigated phenotypes of medication-related adverse effects and effectiveness by using pharmacogenomic studies could be considered as a helpful assistance in selection and monitoring of treatment in mood disorders. Personalized medicine could be achieved in the future by pharmacogenomic tools integrated with environmental factors and biomarkers.

    ABSTRACT I 摘 要 IV 誌 謝 VI CONTENTS VII TABLE OF CONTENTS X FIGURE OF CONTENTS XII 1. INTRODUCTION 1 2. PART Ⅰ 3 ASSOCIATION BETWEEN GENETIC POLYMORPHISMS AND VALPROATE-RELATED METABOLIC ABNORMALITIES IN TAIWANESE PATIENTS WITH BIPOLAR DISORDER 3 2.1 BACKGROUND REVIEW 4 2.1.1 Bipolar Disorder 4 2.1.2 Current Pharmacologic Treatment of Bipolar Disorder 4 2.1.3 Metabolic Abnormalities in Bipolar Disorder 5 2.1.4 Pharmacogenomic Study in Bipolar Patients Receiving Valproate 6 2.2 OBJECTIVES OF CURRENT STUDY 12 2.3 THE ROLE OF VALPROATE IN METABOLIC DISTURBANCES IN BIPOLAR DISORDER PATIENTS 13 2.3.1 Abstract 14 2.3.2 Introduction 15 2.3.3 Materials and Methods 16 2.3.4 Results 19 2.3.5 Discussion 20 2.4 THE EFFECT OF C825T POLYMORPHISM OF THE GNB3 GENE ON VALPROATE-RELATED METABOLIC ABNORMALITIES IN BIPOLAR DISORDER PATIENTS 26 2.4.1 Abstract 27 2.4.2 Introduction 29 2.4.3 Materials and Methods 31 2.4.4 Results 34 2.4.5 Discussion 36 2.5 CONCLUSION AND FUTURE DIRECTION 42 2.5.1 Valproate-Related Metabolic Abnormalities in Bipolar Disorder Patients 42 2.5.2 Association between GNB3 C825T Polymorphism and Valproate-Related Metabolic Abnormalities 44 2.5.3 Future Direction 45 3. PART Ⅱ 47 PREDICT ANTIDEPRESSANT TREATMENT RESPONSE IN TAIWANESE PATIENTS WITH MAJOR DEPRESSIVE DISORDER 47 3.1 BACKGROUND REVIEW 48 3.1.1 Major Depressive Disorder 48 3.1.2 Pharmacological treatments for major depression 48 3.2 OBJECTIVES OF CURRENT STUDY 51 3.3 COMPARISONS OF ANTIDEPRESSANT EFFICACY RELATED SNPS AMONG TAIWANESE AND FOUR POPULATIONS IN THE HAPMAP DATABASE 53 3.3.1 Abstract 54 3.3.2 Introduction 55 3.3.3 Materials and Methods 57 3.3.4 Results 59 3.3.5 Discussion 60 3.4 BRAIN DERIVED NEUROTROPHIC FACTOR GENE POLYMORPHISM AND SHORT-TERM ANTIDEPRESSANT RESPONSE IN MAJOR DEPRESSIVE DISORDER 64 3.4.1 Abstract 65 3.4.2 Introduction 66 3.4.3 Materials and Methods 68 3.4.4 Results 71 3.4.5 Discussion 73 3.5 TPH1 IS ASSOCIATED WITH MAJOR DEPRESSIVE DISORDER BUT NOT WITH SSRI/SNRI RESPONSE IN TAIWANESE PATIENTS 80 3.5.1 Abstract 81 3.5.2 Introduction 82 3.5.3 Materials and Methods 84 3.5.4 Results 87 3.5.5 Discussion 88 3.6 ASSOCIATION BETWEEN ABCB1 POLYMORPHISMS AND FLUOXETINE/ VENLAFAXINE TREATMENT RESPONSE IN TAIWANESE MAJOR DEPRESSIVE PATIENTS 94 3.6.1 Abstract 95 3.6.2 Introduction 97 3.6.3 Materials and Methods 98 3.6.4 Results 101 3.6.5 Discussion 102 3.7 TREATMENT RESPONSE AND COGNITIVE IMPAIRMENT IN MAJOR DEPRESSION: ASSOCIATION WITH C-REACTIVE PROTEIN 105 3.7.1 Abstract 106 3.7.2 Introduction 108 3.7.3 Materials and Methods 110 3.7.4 Results 115 3.7.5 Discussion 117 3.8 RELATIONSHIP BETWEEN SOCIAL SUPPORT SCALE AND ANTIDEPRESSANTS TREATMENT IN PATIENT WITH MAJOR DEPRESSIVE DISORDER 124 3.8.1 Abstract 125 3.8.2 Introduction 126 3.8.3 Materials and Methods 128 3.8.4 Results 131 3.8.5 Discussion 132 3.9 A NEURAL NETWORK MODEL FOR PREDICTING TREATMENT RESPONSE OF ANTIDEPRESSANTS IN PATIENTS WITH MAJOR DEPRESSIVE DISORDER 136 3.9.1 Abstract 137 3.9.2 Introduction 139 3.9.3 Materials and Methods 141 3.9.4 Results 147 3.9.5 Discussion 148 3.10 CONCLUSION AND FUTURE DIRECTION 155 3.10.1 Genetic Factors 155 3.10.2 Biomarker: association between C-reactive Protein with Antidepressant Response 158 3.10.3 Environmental Factors: association between Social Support with Major Depressive Disorder and Antidepressant Response 158 3.10.4 Predicting Treatment Response of Antidepressant 159 3.10.5 Future Direction 160 4. PERSPECTIVES OF PHARMACOGENOMICS 162 5. REFERENCES 164 BIBLIOGRAPHY 192

    1. Arledge T, Freeman A, Arbuckle J, et al: Applications of pharmacogenetics to drug development: the Glaxo Wellcome experience. Drug metabolism reviews 2000; 32:387-394
    2. Kessler D, Lloyd K, Lewis G, et al: Cross sectional study of symptom attribution and recognition of depression and anxiety in primary care. BMJ 1999; 318:436-439
    3. Serretti A,Artioli P: The pharmacogenomics of selective serotonin reuptake inhibitors. Pharmacogenomics Journal 2004; 4:233-244
    4. Marsh S, Kwok P,McLeod HL: SNP databases and pharmacogenetics: great start, but a long way to go. Human mutation 2002; 20:174-179
    5. Lin E, Hwang Y,Tzeng CM: A case study of the utility of the HapMap database for pharmacogenomic haplotype analysis in the Taiwanese population. Mol Diagn Ther 2006; 10:367-370
    6. Preskorn SH: Pharmacogenomics, informatics, and individual drug therapy in psychiatry: past, present and future. J Psychopharmacol 2006; 20:85-94
    7. Serretti A, Lilli R,Smeraldi E: Pharmacogenetics in affective disorders. Eur J Pharmacol 2002; 438:117-128
    8. Murphy GM, Jr., Kremer C, Rodrigues HE, et al: Pharmacogenetics of antidepressant medication intolerance. The American journal of psychiatry 2003; 160:1830-1835
    9. Das AK, Olfson M, Gameroff MJ, et al: Screening for Bipolar Disorder in a Primary Care Practice. JAMA 2005; 293:956-963
    10. Diagnostic and Statistical Manual of Mental Disorders, 4th ed, American Psychiatric Association. Washington, DC, American Psychiatric Association, 1994
    11. Hilty DM, Brady KT,Hales RE: A Review of Bipolar Disorder Among Adults, 1999
    12. Hilty D, Brady, KT, Hales, RE.: A review of bipolar disorder among adults. Psychiatr Serv 1999; 50:201.
    13. JB R,Tondo L: Suicide risk and treatment for patient with bipolar disorder. JAMA 2003; 290:1517-1519
    14. Tondo L, Isacsson G,Baldessarini RJ: Suicidal Behaviour in Bipolar Disorder: Risk and Prevention. CNS Drugs 2003; 17:491-511
    15. Practice guideline for the treatment of patients with bipolar disorder. The American Journal of Psychiatry 2002; 159:1-50
    16. Yatham LN, Kennedy SH, O'Donovan C, et al: Canadian Network for Mood and Anxiety Treatments (CANMAT) guidelines for the management of patients with bipolar disorder: update 2007. Bipolar Disord 2006; 8:721-739
    17. Regenold W, Thapar R, Marano C, et al: Increased prevalence of type 2 diabetes mellitus among psychiatric inpatients with bipolar Ⅰ affective and schizoaffective disorders independent of psychotropic drug use. J Affect Disord 2002; 70:19-26
    18. Cassidy F, Ahearn E,Carroll B: Elevated frequency of diabetes mellitus in hospitalized manic-depressive patients. Am J Psychiatry 1999; 156:1417-1420
    19. Taylor V,MacQueen G: Associations between bipolar disorder and metabolic syndrome: A review. J Clin Psychiatry 2006; 67:1034-1041
    20. Chang HH, Chou CH, Chen PS, et al: High prevalence of metabolic disturbances in patients with bipolar disorder in Taiwan. Journal of Affective Disorders 2009; In Press:
    21. Fagiolini A, Frank E, Scott JA, et al: Metabolic syndrome in bipolar disorder: findings from the Bipolar Disorder Center for Pennsylvanians. Bipolar Disord 2005; 7:424-430
    22. Yumru M, Savas HA, Kurt E, et al: Atypical antipsychotics related metabolic syndrome in bipolar patients. J Affect Disord 2007; 98:247-252
    23. Ford ES, Giles WH, Dietz WH, et al: Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002; 287:356-359
    24. Fiedorowicz JG, Palagummi NM, Forman-Hoffman VL, et al: Elevated prevalence of obesity, metabolic syndrome, and cardiovascular risk factors in bipolar disorder. Ann Clin Psychiatry 2008; 20:131-137
    25. Fagiolini A, Kupfer DJ, Houck PR, et al: Obesity as a correlate of outcome in patients with bipolar I disorder. Am J Psychiatry 2003; 160:112-117
    26. Taylor V,MacQueen G: Associations between bipolar disorder and metabolic syndrome: A review. J Clin Psychiatry 2006; 67:1034-1041
    27. Harrow M, Goldberg JF, Grossman LS, et al: Outcome in manic disorders. A naturalistic follow-up study. Arch Gen Psychiatry 1990; 47:665-671
    28. Dittmann S, Biedermann NC, Grunze H, et al: The Stanley Foundation Bipolar Network: results of the naturalistic follow-up study after 2.5 years of follow-up in the German centres. Neuropsychobiology 2002; 46 Suppl 1:2-9
    29. Chengappa KN, Levine J, Gershon S, et al: Lifetime prevalence of substance or alcohol abuse and dependence among subjects with bipolar I and II disorders in a voluntary registry. Bipolar Disord 2000; 2:191-195
    30. Kessler RC, Rubinow DR, Holmes C, et al: The epidemiology of DSM-III-R bipolar I disorder in a general population survey. Psychol Med 1997; 27:1079-1089
    31. Krishnan KR,Krishnan KRR: Psychiatric and medical comorbidities of bipolar disorder. Psychosom Med 2005; 67:1-8
    32. Wildes JE, Marcus MD,Fagiolini A: Obesity in patients with bipolar disorder: a biopsychosocial-behavioral model. J Clin Psychiatry 2006; 67:904-915
    33. Garland EJ, Remick RA, Zis AP, et al: Weight gain with antidepressants and lithium. J Clin Psychopharmacol 1988; 8:323-330
    34. Vestergaard P, Poulstrup I,Schou M: Prospective studies on a lithium cohort 3: Tremor, weight gain, diarrhea, psychological complaints. Acta Psychiatrica Scandinavica 1988; 78:434-441
    35. Pylvanen V, Pakarinen A, Knip M, et al: Insulin-related metabolic changes during treatment with valproate in patients with epilepsy. Epilepsy Behav 2006; 8:643-648
    36. Isojarvi J, Laatikainen T,Knip M: Obesity and endocrine disorders in women taking valproate for epilepsy. Ann Neurol 1996; 39:579-584
    37. Rattya J, Pakarinen A,Knip M: Early hormornal change during valproate or carbamazepine treatment: a 3-month study. Neurology 2001; 57:440-444
    38. Corman CL, Leung NM, Guberman AH, et al: Weight gain in epileptic patients during treatment with valproic acid: a retrospective study. Can J Neurol Sci 1997; 24:240-244
    39. Nasrallah HA,Nasrallah HA: The roles of efficacy, safety, and tolerability in antipsychotic effectiveness: practical implications of the CATIE schizophrenia trial. J Clin Psychiatry 2007; 68 (Suppl 1):5-11
    40. Meyer JM: Novel antipsychotics and severe hyperlipidemia. J Clin Psychopharmacol 2001; 21:369-374
    41. Wu RR, Zhao JP, Liu ZN, et al: Effects of typical and atypical antipsychotics on glucose-insulin homeostasis and lipid metabolism in first-episode schizophrenia. Psychopharmacology 2006; 186:572-578
    42. Benazzi F: Bipolar II disorder : epidemiology, diagnosis and management. CNS Drugs 2007; 21:727-740
    43. Hamed SA: Leptin and insulin homeostasis in epilepsy: relation to weight adverse conditions. Epilepsy Res 2007; 75:1-9
    44. Hossain P, Kawar B,El Nahas M: Obesity and diabetes in the developing world--a growing challenge. N Engl J Med 2007; 356:213-215
    45. Grundy SM, Cleeman JI, Daniels SR, et al: Diagnosis and Management of the Metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005; 112:2735-2752
    46. Beltowski J,Beltowski J: Leptin and atherosclerosis. Atherosclerosis 2006; 189:47-60
    47. Rahmouni K, Morgan DA, Morgan GM, et al: Role of selective leptin resistance in diet-induced obesity hypertension. Diabetes 2005; 54:2012-2018
    48. Ahima RS: Central actions of adipocyte hormones. Trends Endocrinol Metab 2005; 16:307-313
    49. Miller GE, Stetler CA, Carney RM, et al: Clinical depression and inflammatory risk markers for coronary heart disease. American Journal of Cardiology 2002; 90:1279-1283
    50. Adli M, Hollinde DL, Stamm T, et al: Response to lithium augmentation in depression is associated with the glycogen synthase kinase 3-beta -50T/C single nucleotide polymorphism. Biol Psychiatry 2007; 62:1295-1302
    51. Baum AE, Akula N, Cabanero M, et al: A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2007;
    52. Ogden CA, Rich ME, Schork NJ, et al: Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 2004; 9:1007-1029
    53. Lee MH, Kim M, Lee BH, et al: Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver. Toxicol Appl Pharmacol 2007;
    54. Chetcuti A, Adams LJ, Mitchell PB, et al: Altered gene expression in mice treated with the mood stabilizer sodium valproate. Int J Neuropsychopharmacol 2006; 9:267-276
    55. McQuillin A, Rizig M,Gurling HM: A microarray gene expression study of the molecular pharmacology of lithium carbonate on mouse brain mRNA to understand the neurobiology of mood stabilization and treatment of bipolar affective disorder. Pharmacogenet Genomics 2007; 17:605-617
    56. Smith RC, Segman RH, Golcer-Dubner T, et al: Allelic variation in ApoC3, ApoA5 and LPL genes and first and second generation antipsychotic effects on serum lipids in patients with schizophrenia. Pharmacogenomics J 2007;
    57. Coletta DK, Schneider J, Stern MP, et al: Association of neuropeptide Y receptor Y5 polymorphisms with dyslipidemia in Mexican Americans. Obesity (Silver Spring, Md 2007; 15:809-815
    58. Schoenborn V, Heid IM, Vollmert C, et al: The ATGL gene is associated with free fatty acids, triglycerides, and type 2 diabetes. Diabetes 2006; 55:1270-1275
    59. Chen G, Hasanat KA, Bebchuk JM, et al: Regulation of signal transduction pathways and gene expression by mood stabilizers and antidepressants. Psychosom Med 1999; 61:599-617
    60. Hahn CG, Umapathy, Wang HY, et al: Lithium and valproic acid treatments reduce PKC activation and receptor-G protein coupling in platelets of bipolar manic patients. J Psychiatr Res 2005; 39:355-363
    61. McElroy S, Frye M, Suppes T, et al: Correlates of overweight and obesity in 644 patients with bipolar disorder. J Clin Psychiatry 2002; 63:207-213
    62. Sicras A, Rejas J, Navarro R, et al: Metabolic syndrome in bipolar disorder: a cross-sectional assessment of a Health Management Organization database. Bipolar Disord 2008; 10:607-616
    63. Salvi V, Albert U, Chiarle A, et al: Metabolic syndrome in Italian patients with bipolar disorder. Gen Hosp Psychiatry 2008; 30:318-323
    64. Bauer M, Lecrubier Y,Suppes T: Awareness of metabolic concerns in patients with bipolar disorder: a survey of European psychiatrists. Eur Psychiatry 2008; 23:169-177
    65. Garcia-Portilla MP, Saiz PA, Benabarre A, et al: The prevalence of metabolic syndrome in patients with bipolar disorder. J Affect Disord 2008; 106:197-201
    66. van Winkel R, van Os J, Celic I, et al: Psychiatric diagnosis as an independent risk factor for metabolic disturbances: results from a comprehensive, naturalistic screening program. Journal of Clinical Psychiatry 2008; 69:1319-1327
    67. van Winkel R, De Hert M, Van Eyck D, et al: Prevalence of diabetes and the metabolic syndrome in a sample of patients with bipolar disorder. Bipolar Disord 2008; 10:342-348
    68. Kilbourne AM, Brar JS, Drayer RA, et al: Cardiovascular Disease and Metabolic Risk Factors in Male Patients With Schizophrenia, Schizoaffective Disorder, and Bipolar Disorder. Psychosomatics 2007; 48:412-417
    69. Yumru M, Savas E, Gergerlioglu HS, et al: The relationship of metabolic syndrome, serum leptin levels and treatment in bipolar disorder Bulletin of Clinical Psychopharmacology 2008; 18:79-83
    70. Greco R, Latini G, Chiarelli F, et al: Leptin, ghrelin, and adiponectin in epileptic patients treated with valproic acid. Neurology 2005; 65:1808-1809
    71. Ben-Menachem E: Weight issues for people with epilepsy--a review. Epilepsia 2007; 48 Suppl 9:42-45
    72. Isojarvi J, Rattya J,VV M: Valproate, lamotrigine, and insulin-mediated risks in women with epilepsy. Ann Neurol 1998; 43:446-451
    73. Pylvanen V, Pakarinen A, Knip M, et al: Insulin-related metabolic changes during treatment with valproate in patients with epilepsy. Epilepsy & Behavior 2006; 8:643-648
    74. Keck PE,McElroy SL: Bipolar disorder, obesity, and pharmacotherapy-associated weight gain. J Clin Psychiatry 2003; 64:1426-1435
    75. Kim B, Kim SJ, Son JI, et al: Weight change in the acute treatment of bipolar I disorder: a naturalistic observational study of psychiatric inpatients. J Affect Disord 2008; 105:45-52
    76. Seidell JC, Cigolini M, Charzewska J, et al: Fat distribution in European women: a comparison of anthropometric measurements in relation to cardiovascular risk factors. Int J Epidemiol 1990; 19:303-308
    77. Gilmor ML, Skelton KH, Nemeroff CB, et al: The effects of chronic treatment with the mood stabilizers valproic acid and lithium on corticotropin-releasing factor neuronal systems. Journal of Pharmacology & Experimental Therapeutics 2003; 305:434-439
    78. McIntyre RS, Mancini DA, Basile VS, et al: Antipsychotic-induced weight gain: bipolar disorder and leptin. J Clin Psychopharmacol 2003; 23:323-327
    79. Flanagan DE, Keshavarz T, Evans ML, et al: Role of corticotrophin-releasing hormone in the impairment of counterregulatory responses to hypoglycemia. Diabetes 2003; 52:605-613
    80. Chan O, Inouye K, Akirav EM, et al: Hyperglycemia does not increase basal hypothalamo-pituitary-adrenal activity in diabetes but it does impair the HPA response to insulin-induced hypoglycemia. Am J Physiol Regul Integr Comp Physiol 2005; 289:R235-246
    81. Bolanos JP,Medina JM: Effect of valproate on the metabolism of the central nervous system. Life Sci 1997; 60:1933-1942
    82. Johannessen CU, Petersen D, Fonnum F, et al: The acute effect of valproate on cerebral energy metabolism in mice. Epilepsy Res 2001; 47:247-256
    83. Wong HY, Chu TS, Lai JC, et al: Sodium valproate inhibits glucose transport and exacerbates Glut1-deficiency in vitro. J Cell Biochem 2005; 96:775-785
    84. Lam TK: Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production. Cellscience 2007; 3:63-69
    85. Lam TK, Gutierrez-Juarez R, Pocai A, et al: Brain glucose metabolism controls the hepatic secretion of triglyceride-rich lipoproteins. Nat Med 2007; 13:171-180
    86. Mueller WM, Gregoire FM, Stanhope KL, et al: Evidence that glucose metabolism regulates leptin secretion from cultured rat adipocytes. Endocrinology 1998; 139:551-558
    87. Hosokawa T, Momose T,Kasai K: Brain glucose metabolism difference between bipolar and unipolar mood disorders in depressed and euthymic states. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:243-250
    88. de Araujo IE, Gutierrez R, Oliveira-Maia AJ, et al: Neural ensemble coding of satiety states. Neuron 2006; 51:483-494
    89. Chen PS, Yang YK, Yeh TL, et al: Correlation between body mass index and striatal dopamine transporter availability in healthy volunteers--a SPECT study. NeuroImage 2008; 40:275-279
    90. Lu XY, Kim CS, Frazer A, et al: Leptin: a potential novel antidepressant. Proc Natl Acad Sci U S A 2006; 103:1593-1598
    91. McIntyre RS, Soczynska JK, Lewis GF, et al: Managing psychiatric disorders with antidiabetic agents: translational research and treatment opportunities. Expert Opin Pharmacother 2006; 7:1305-1321
    92. McIntyre RS, Mancini DA, McCann S, et al: Valproate, bipolar disorder and polycystic ovarian syndrome. Bipolar Disord 2003; 5:28-35
    93. Isojarvi JI, Laatikainen TJ, Pakarinen AJ, et al: Polycystic ovaries and hyperandrogenism in women taking valproate for epilepsy. N Engl J Med 1993; 329:1383-1388
    94. Rasgon NL, Reynolds MF, Elman S, et al: Longitudinal evaluation of reproductive function in women treated for bipolar disorder. J Affect Disord 2005; 89:217-225
    95. Tauboll E, Gregoraszczuk EL, Kolodziej A, et al: Valproate inhibits the conversion of testosterone to estradiol and acts as an apoptotic agent in growing porcine ovarian follicular cells. Epilepsia 2003; 44:1014-1021
    96. Lossius MI, Tauboll E, Mowinckel P, et al: Reversible effects of antiepileptic drugs on reproductive endocrine function in men and women with epilepsy--a prospective randomized double-blind withdrawal study. Epilepsia 2007; 48:1875-1882
    97. Joffe H, Cohen LS, Suppes T, et al: Longitudinal follow-up of reproductive and metabolic features of valproate-associated polycystic ovarian syndrome features: A preliminary report. Biol Psychiatry 2006; 60:1378-1381
    98. Nelson-DeGrave VL, Wickenheisser JK, Cockrell JE, et al: Valproate potentiates androgen biosynthesis in human ovarian theca cells. Endocrinology 2004; 145:799-808
    99. Sagud M, Mihaljevic-Peles A, Pivac N, et al: Lipid levels in female patients with affective disorders. Psychiatry Research 2009; 168:218-221
    100. Tsai SY, Lee HC,Chen CC: Hyperinsulinaemia associated with beta-adrenoceptor antagonist in medicated bipolar patients during manic episode. Progress in Neuro-Psychopharmacology & Biological Psychiatry 2007; 31:1038-1043
    101. Sicras A, Rejas J, Navarro R, et al: Metabolic syndrome in bipolar disorder: a cross-sectional assessment of a Health Management Organization database. Bipolar Disord 2008; 10:607-616
    102. Fiedorowicz JG, Palagummi NM, Forman-Hoffman VL, et al: Elevated prevalence of obesity, metabolic syndrome, and cardiovascular risk factors in bipolar disorder. Ann Clin Psychiatry 2008; 20:131-137
    103. Fagiolini A, Chengappa KN, Soreca I, et al: Bipolar disorder and the metabolic syndrome: causal factors, psychiatric outcomes and economic burden. CNS Drugs 2008; 22:655-669
    104. van Winkel R, De Hert M, Van Eyck D, et al: Prevalence of diabetes and the metabolic syndrome in a sample of patients with bipolar disorder. Bipolar Disord 2008; 10:342-348
    105. Kim JY,Lee HW: Metabolic and hormonal disturbances in women with epilepsy on antiepileptic drug monotherapy. Epilepsia 2007; 48:1366-1370
    106. Elmslie JL, Porter RJ, Joyce PR, et al: Comparison of insulin resistance, metabolic syndrome and adiponectin in overweight bipolar patients taking sodium valproate and controls. Aust N Z J Psychiatry 2009; 43:53-60
    107. Pylvanen V, Knip M, Pakarinen A, et al: Serum insulin and leptin levels in valproate-associated obesity. Epilepsia 2002; 43:514-517
    108. Chang HH, Yang YK, Gean PW, et al: The Role of Valproate in Metabolic Disturbances in Bipolar Disorder Patients. Journal of Affective Disorders 2010; 124:319-323
    109. Corman CL, Leung NM, Guberman AH, et al: Weight gain in epileptic patients during treatment with valproic acid: a retrospective study. Can J Neurol Sci 1997; 24:240-244
    110. Siffert W, Rosskopf D, Siffert G, et al: Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet 1998; 18:45-48
    111. Siffert W: G protein beta 3 subunit 825T allele, hypertension, obesity, and diabetic nephropathy. Nephrol Dial Transplant 2000; 15:1298-1306
    112. Kopf D, Cheng LS, Blandau P, et al: Association of insulin sensitivity and glucose tolerance with the c.825C>T variant of the G protein beta-3 subunit gene. J Diabetes Complications 2008; 22:205-209
    113. Casiglia E, Tikhonoff V, Caffi S, et al: Effects of the C825T polymorphism of the GNB3 gene on body adiposity and blood pressure in fertile and menopausal women: a population-based study. J Hypertens 2008; 26:238-243
    114. Hayakawa T, Takamura T, Abe T, et al: Association of the C825T polymorphism of the G-protein beta3 subunit gene with hypertension, obesity, hyperlipidemia, insulin resistance, diabetes, diabetic complications, and diabetic therapies among Japanese. Metabolism 2007; 56:44-48
    115. Danoviz ME, Pereira AC, Mill JG, et al: Hypertension, obesity and GNB 3 gene variants. Clin Exp Pharmacol Physiol 2006; 33:248-252
    116. Brand E, Wang JG, Herrmann SM, et al: An epidemiological study of blood pressure and metabolic phenotypes in relation to the Gbeta3 C825T polymorphism. J Hypertens 2003; 21:729-737
    117. Meirhaeghe A, Cottel D, Amouyel P, et al: Lack of association between certain candidate gene polymorphisms and the metabolic syndrome. Mol Genet Metab 2005; 86:293-299
    118. Souza RP, De Luca V, Muscettola G, et al: Association of antipsychotic induced weight gain and body mass index with GNB3 gene: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1848-1853
    119. Martini JS, Raake P, Vinge LE, et al: Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc Natl Acad Sci U S A 2008; 105:12457-12462
    120. Beaulieu JM,Caron MG: Beta-arrestin goes nuclear. Cell 2005; 123:755-757
    121. Hong CJ, Chen TJ, Yu YW, et al: Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenomics Journal 2006; 6:27-33
    122. Wang YC, Bai YM, Chen JY, et al: C825T polymorphism in the human G protein beta3 subunit gene is associated with long-term clozapine treatment-induced body weight change in the Chinese population. Pharmacogenet Genomics 2005; 15:743-748
    123. Hauner H, Meier M, Jockel KH, et al: Prediction of successful weight reduction under sibutramine therapy through genotyping of the G-protein beta3 subunit gene (GNB3) C825T polymorphism. Pharmacogenetics 2003; 13:453-459
    124. Kato M, Wakeno M, Okugawa G, et al: Antidepressant response and intolerance to SSRI is not influenced by G-protein beta3 subunit gene C825T polymorphism in Japanese major depressive patients. Progress in Neuro-Psychopharmacology & Biological Psychiatry 2008; 32:1041-1044
    125. Wilkie MJ, Smith D, Reid IC, et al: A splice site polymorphism in the G-protein beta subunit influences antidepressant efficacy in depression. Pharmacogenetics & Genomics 2007; 17:207-215
    126. Lee HJ, Cha JH, Ham BJ, et al: Association between a G-protein beta 3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics Journal 2004; 4:29-33
    127. Willeit M, Praschak-Rieder N, Zill P, et al: C825T polymorphism in the G protein beta3-subunit gene is associated with seasonal affective disorder. Biol Psychiatry 2003; 54:682-686
    128. Beaulieu JM, Marion S, Rodriguiz RM, et al: A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 2008; 132:125-136
    129. Stockli J,James DE: Insulin action under arrestin. Cell Metab 2009; 9:213-214
    130. Andersohn F, Schade R, Suissa S, et al: Long-term use of antidepressants for depressive disorders and the risk of diabetes mellitus. Am J Psychiatry 2009; 166:591-598
    131. Reagan LP: Insulin signaling effects on memory and mood. Current Opinion in Pharmacology 2007; 7:633-637
    132. Rosskopf D, Manthey I,Siffert W: Identification and ethnic distribution of major haplotypes in the gene GNB3 encoding the G-protein beta3 subunit. Pharmacogenetics 2002; 12:209-220
    133. Siffert W, Forster P, Jockel KH, et al: Worldwide ethnic distribution of the G protein beta3 subunit 825T allele and its association with obesity in Caucasian, Chinese, and Black African individuals. Journal of the American Society of Nephrology 1999; 10:1921-1930
    134. Huang X, Ju Z, Song Y, et al: Lack of association between the G protein beta3 subunit gene and essential hypertension in Chinese: a case-control and a family-based study. Journal of Molecular Medicine 2003; 81:729-735
    135. Brand E, Herrmann SM, Nicaud V, et al: The 825C/T polymorphism of the G-protein subunit beta3 is not related to hypertension. Hypertension 1999; 33:1175-1178
    136. Dong Y, Zhu H, Sagnella GA, et al: Association between the C825T polymorphism of the G protein beta3-subunit gene and hypertension in blacks. Hypertension 1999; 34:1193-1196
    137. Hayakawa T, Takamura T, Abe T, et al: Association of the C825T polymorphism of the G-protein beta3 subunit gene with hypertension, obesity, hyperlipidemia, insulin resistance, diabetes, diabetic complications, and diabetic therapies among Japanese. Metabolism: Clinical & Experimental 2007; 56:44-48
    138. Saller B, Nemesszeghy P, Mann K, et al: Glucose and lipid metabolism in young lean normotensive males with the G protein beta3 825T-allele. European Journal of Medical Research 2003; 8:91-97
    139. Brand E, Wang JG, Herrmann SM, et al: An epidemiological study of blood pressure and metabolic phenotypes in relation to the Gbeta3 C825T polymorphism. Journal of Hypertension 2003; 21:729-737
    140. Kiani JG, Saeed M, Parvez SH, et al: Association of G-protein beta-3 subunit gene (GNB3) T825 allele with Type II diabetes. Neuroendocrinology Letters 2005; 26:87-88
    141. Ranade K, Wu KD, Risch N, et al: Genetic variation in aldosterone synthase predicts plasma glucose levels. Proc Natl Acad Sci U S A 2001; 98:13219-13224
    142. Lan TH, Loh EW, Wu MS, et al: Performance of a neuro-fuzzy model in predicting weight changes of chronic schizophrenic patients exposed to antipsychotics. Mol Psychiatry 2008; 13:1129-1137
    143. Lin E, Chen PS, Chang HH, et al: Interaction of serotonin-related genes affects short-term antidepressant response in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1167-1172
    144. Grundy SM, Brewer HB, Jr., Cleeman JI, et al: Definition of Metabolic Syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition. Circulation 2004; 109:433-438
    145. Blalock EM, Grondin R, Chen K-c, et al: Aging-Related Gene Expression in Hippocampus Proper Compared with Dentate Gyrus Is Selectively Associated with Metabolic Syndrome Variables in Rhesus Monkeys. The Journal of Neuroscience 2010; 30:6058-6071
    146. Verrotti A, la Torre R, Trotta D, et al: Valproate-induced insulin resistance and obesity in children. Horm Res 2009; 71:125-131
    147. McIntyre RS, Danilewitz M, Liauw SS, et al: Bipolar disorder and metabolic syndrome: An international perspective. Journal of Affective Disorders 2010; 126:366-387
    148. Beger R, Hansen D, Schnackenberg L, et al: Single valproic acid treatment inhibits glycogen and RNA ribose turnover while disrupting glucose-derived cholesterol synthesis in liver as revealed by the [U-13C6]-D-glucose tracer in mice. Metabolomics 2009; 5:336-345
    149. Schnackenberg LK, Jones RC, Thyparambil S, et al: An Integrated Study of Acute Effects of Valproic Acid in the Liver Using Metabonomics, Proteomics, and Transcriptomics Platforms. Omics 2006; 10:1-14
    150. Wong HY, Chu TS, Lai JC, et al: Sodium valproate inhibits glucose transport and exacerbates Glut1-deficiency in vitro. Journal of Cellular Biochemistry 2005; 96:775-785
    151. Ng F, Mammen OK, Wilting I, et al: The International Society for Bipolar Disorders (ISBD) consensus guidelines for the safety monitoring of bipolar disorder treatments. Bipolar Disord 2009; 11:559-595
    152. de Almeida KM, Moreira CLRL,Lafer B: Metabolic Syndrome and Bipolar Disorder: What Should Psychiatrists Know? CNS Neuroscience & Therapeutics 2011; doi: 10.1111/j.1755-5949.2011.00240.x
    153. McElroy SL, Frye MA, Altshuler LL, et al: A 24-week, randomized, controlled trial of adjunctive sibutramine versus topiramate in the treatment of weight gain in overweight or obese patients with bipolar disorders. Bipolar Disord 2007; 9:426-434
    154. Kemp DE, Ismail-Beigi F,Calabrese JR: Antidepressant Response Associated With Pioglitazone: Support for an Overlapping Pathophysiology Between Major Depression and Metabolic Syndrome. American Journal of Psychiatry 2009; 166:619
    155. Peters BJ, Maitland-van der Zee AH, Stricker BH, et al: Effectiveness of statins in the reduction of the risk of myocardial infarction is modified by the GNB3 C825T variant. Pharmacogenet Genomics 2008; 18:631-636
    156. Souza RP, De Luca V, Muscettola G, et al: Association of antipsychotic induced weight gain and body mass index with GNB3 gene: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1848-1853
    157. Lee HJ, Sung SM, Han CS, et al: G-protein beta3 subunit C825T polymorphism tends to be associated with seasonal variation in young male college students. Neuropsychobiology 2005; 52:135-139
    158. Fava M,Kendler KS: Major Depressive Disorder. Neuron 2000; 28:335-341
    159. Murray CJ,Lopez AD: Evidence-based health policy--lessons from the Global Burden of Disease Study. Science 1996; 274:740-743
    160. Coyne JC, Fechner-Bates S,Schwenk TL: Prevalence, nature, and comorbidity of depressive disorders in primary care. General Hospital Psychiatry 1994; 16:267-276
    161. Sullivan PF, Neale MC,Kendler KS: Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157:1552-1562
    162. Kendler KS, Gatz M, Gardner CO, et al: A Swedish national twin study of lifetime major depression. Am J Psychiatry 2006; 163:109-114
    163. Blazer DG, 2nd,Hybels CF: Origins of depression in later life. Psychological Medicine 2005; 35:1241-1252
    164. Sato T, Hirano S, Narita T, et al: Temperament and character inventory dimensions as a predictor of response to antidepressant treatment in major depression. J Affect Disord 1999; 56:153-161
    165. Drago A, De Ronchi D,Serretti A: Pharmacogenetics of antidepressant response: an update. Hum Genomics 2009; 3:257-274
    166. Laje G, Perlis RH, Rush AJ, et al: Pharmacogenetics studies in STAR*D: strengths, limitations, and results. Psychiatr Serv 2009; 60:1446-1457
    167. Binder EB,Holsboer F: Pharmacogenomics and antidepressant drugs. Ann Med 2006; 38:82-94
    168. Lin E,Chen PS: Pharmacogenomics with antidepressants in the STAR*D study. Pharmacogenomics 2008; 9:935-946
    169. Horstmann S,Binder EB: Pharmacogenomics of antidepressant drugs. Pharmacol Ther 2009; 124:57-73
    170. Ising M, Lucae S, Binder EB, et al: A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch Gen Psychiatry 2009; 66:966-975
    171. Choi MJ, Kang RH, Lim SW, et al: Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res 2006; 1118:176-182
    172. Yoshida K, Higuchi H, Kamata M, et al: The G196A polymorphism of the brain-derived neurotrophic factor gene and the antidepressant effect of milnacipran and fluvoxamine. J Psychopharmacol 2007; 21:650-656
    173. Tsai SJ, Cheng CY, Yu YW, et al: Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am J Med Genet B Neuropsychiatr Genet 2003; 123B:19-22
    174. Joyce PR, Mulder RT, Luty SE, et al: Age-dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporter and G protein beta3 subunit as predictors of response to fluoxetine and nortriptyline. Int J Neuropsychopharmacol 2003; 6:339-346
    175. Lee HJ, Cha JH, Ham BJ, et al: Association between a G-protein beta 3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders. Pharmacogenomics J 2004; 4:29-33
    176. Zill P, Baghai TC, Zwanzger P, et al: Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport 2000; 11:1893-1897
    177. Kato M, Fukuda T, Wakeno M, et al: Effects of the serotonin type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients. Neuropsychobiology 2006; 53:186-195
    178. Choi MJ, Kang RH, Ham BJ, et al: Serotonin receptor 2A gene polymorphism (-1438A/G) and short-term treatment response to citalopram. Neuropsychobiology 2005; 52:155-162
    179. McMahon FJ, Buervenich S, Charney D, et al: Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet 2006; 78:804-814
    180. Wilkie MJ, Smith G, Day RK, et al: Polymorphisms in the SLC6A4 and HTR2A genes influence treatment outcome following antidepressant therapy. Pharmacogenomics J 2009; 9:61-70
    181. Yu YW, Chen TJ, Hong CJ, et al: Association study of the interleukin-1 beta (C-511T) genetic polymorphism with major depressive disorder, associated symptomatology, and antidepressant response. Neuropsychopharmacology 2003; 28:1182-1185
    182. Baune BT, Dannlowski U, Domschke K, et al: The Interleukin 1 Beta (IL1B) Gene Is Associated with Failure to Achieve Remission and Impaired Emotion Processing in Major Depression. Biol Psychiatry 2009;
    183. Hong Ng C, Norman TR, Naing KO, et al: A comparative study of sertraline dosages, plasma concentrations, efficacy and adverse reactions in Chinese versus Caucasian patients. Int Clin Psychopharmacol 2006; 21:87-92
    184. Kunugi H, Hattori M, Kato T, et al: Serotonin transporter gene polymorphisms: ethnic difference and possible association with bipolar affective disorder. Mol Psychiatry 1997; 2:457-462
    185. Rahemtulla T,Bhopal R: Pharmacogenetics and ethnically targeted therapies. Bmj 2005; 330:1036-1037
    186. The International HapMap Project. Nature 2003; 426:789-796
    187. Kozisek ME, Middlemas D,Bylund DB: Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol. Ther. 2008; 117:30-51
    188. Martinowich K,Lu B: Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 2008; 33:73-83
    189. Martinowich K, Manji H,Lu B: New insights into BDNF function in depression and anxiety. Nat. Neurosci. 2007; 10:1089-1093
    190. Tsai SJ, Hong CJ,Liou YJ: Brain-derived neurotrophic factor and antidepressant action: another piece of evidence from pharmacogenetics. Pharmacogenomics 2008; 9:1353-1358
    191. Taliaz D, Stall N, Dar DE, et al: Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol. Psychiatry 2010; 15:80-92
    192. Lee BH, Kim H, Park SH, et al: Decreased plasma BDNF level in depressive patients. J Affect Disord 2007; 101:239-244
    193. Basterzi AD, Yazici K, Aslan E, et al: Effects of fluoxetine and venlafaxine on serum brain derived neurotrophic factor levels in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:281-285
    194. Montag C, Weber B, Fliessbach K, et al: The BDNF Val66Met polymorphism impacts parahippocampal and amygdala volume in healthy humans: incremental support for a genetic risk factor for depression. Psychol. Med. 2009; 39:1831-1839
    195. Rybakowski JK: BDNF gene: functional Val66Met polymorphism in mood disorders and schizophrenia. Pharmacogenomics 2008; 9:1589-1593
    196. Frodl T, Moller HJ,Meisenzahl E: Neuroimaging genetics: new perspectives in research on major depression? Acta Psychiatr. Scand. 2008; 118:363-372
    197. Liu X, Xu Y, Jiang S, et al: Family-based association study between brain-derived neurotrophic factor gene and major depressive disorder of Chinese descent. Psychiatry Res. 2009; 169:169-172
    198. Cheeran B, Talelli P, Mori F, et al: A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J. Physiol. 2008; 586:5717-5725
    199. Bocchio-Chiavetto L, Miniussi C, Zanardini R, et al: 5-HTTLPR and BDNF Val66Met polymorphisms and response to rTMS treatment in drug resistant depression. Neurosci. Lett. 2008; 437:130-134
    200. Rybakowski JK, Suwalska A, Skibinska M, et al: Prophylactic lithium response and polymorphism of the brain-derived neurotrophic factor gene. Pharmacopsychiatry 2005; 38:166-170
    201. Dmitrzak-Weglarz M, Rybakowski JK, Suwalska A, et al: Association studies of the BDNF and the NTRK2 gene polymorphisms with prophylactic lithium response in bipolar patients. Pharmacogenomics 2008; 9:1595-1603
    202. Lin E, Chen PS, Chang HH, et al: Interaction of serotonin-related genes affects short-term antidepressant response in major depressive disorder. Prog. Neuropsychopharmacol. B ol. Psychiatry 2009; 33:1167-1172
    203. Choi MJ, Kang RH, Lim SW, et al: Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res. 2006; 1118:176-182
    204. Tsai SJ, Cheng CY, Yu YW, et al: Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am. J. Med. Genet. 2003; 123B:19-22
    205. Rajewska-Rager A, Skibinska M, Szczepankiewicz A, et al: Association between polymorphisms of Val66Met in the BDNF gene and the response to escitalopram and nortriptyline treatment in the light of the neurodevelopmental hypothesis of depression. Psychiatr. Pol. 2008; 42:915-923
    206. Domschke K, Lawford B, Laje G, et al: Brain-derived neurotrophic factor ( BDNF) gene: no major impact on antidepressant treatment response. Int. J. Neuropsychopharmacol. 2010; 13:93-101
    207. Matrisciano F, Bonaccorso S, Ricciardi A, et al: Changes in BDNF serum levels in patients with major depression disorder (MDD) after 6 months treatment with sertraline, escitalopram, or venlafaxine. J. Psychiatr. Res. 2009; 43:247-254
    208. Tsankova NM, Berton O, Renthal W, et al: Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 2006; 9:519-525
    209. Cooke JD, Grover LM,Spangler PR: Venlafaxine treatment stimulates expression of brain-derived neurotrophic factor protein in frontal cortex and inhibits long-term potentiation in hippocampus. Neuroscience 2009; 162:1411-1419
    210. Kang R, Chang H, Wong M, et al: Brain-derived neurotrophic factor gene polymorphisms and mirtazapine responses in Koreans with major depression. J. Psychopharmacol. 2009; [Epub ahead of print]:
    211. Verhagen M, van der Meij A, van Deurzen PA, et al: Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol. Psychiatry 2010; 15:260-271
    212. Zou YF, Wang Y, Liu P, et al: Association of Brain-Derived Neurotrophic Factor Genetic Val66Met Polymorphism with Severity of Depression, Efficacy of Fluoxetine and Its Side Effects in Chinese Major Depressive Patients. Neuropsychobiology 2009; 61:71-78
    213. Sullivan PF, Neale MC,Kendler KS: Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157:1552-1562
    214. Evans J, Reeves B, Platt H, et al: Impulsiveness, serotonin genes and repetition of deliberate self-harm (DSH). Psychol Med 2000; 30:1327-1334
    215. Nakamura K, Sugawara Y, Sawabe K, et al: Late developmental stage-specific role of tryptophan hydroxylase 1 in brain serotonin levels. Journal of Neuroscience 2006; 26:530-534
    216. Rujescu D, Giegling I, Bondy B, et al: Association of anger-related traits with SNPs in the TPH gene. Mol Psychiatry 2002; 7:1023-1029
    217. Walther DJ,Bader M: A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 2003; 66:1673-1680
    218. Walther DJ, Peter JU, Bashammakh S, et al: Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003; 299:76
    219. Nielsen DA, Jenkins GL, Stefanisko KM, et al: Sequence, splice site and population frequency distribution analyses of the polymorphic human tryptophan hydroxylase intron 7. Brain Res Mol Brain Res 1997; 45:145-148
    220. Nakamura K, Sugawara Y, Sawabe K, et al: Late developmental stage-specific role of tryptophan hydroxylase 1 in brain serotonin levels. J Neurosci 2006; 26:530-534
    221. Zill P, Buttner A, Eisenmenger W, et al: Predominant expression of tryptophan hydroxylase 1 mRNA in the pituitary: a postmortem study in human brain. Neuroscience 2009; 159:1274-1282
    222. Zill P, Buttner A, Eisenmenger W, et al: Analysis of tryptophan hydroxylase I and II mRNA expression in the human brain: a post-mortem study. J Psychiatr Res 2007; 41:168-173
    223. Jonsson EG, Goldman D, Spurlock G, et al: Tryptophan hydroxylase and catechol-O-methyltransferase gene polymorphisms: relationships to monoamine metabolite concentrations in CSF of healthy volunteers. Eur Arch Psychiatry Clin Neurosci 1997; 247:297-302
    224. Nielsen DA, Virkkunen M, Lappalainen J, et al: A tryptophan hydroxylase gene marker for suicidality and alcoholism. Arch Gen Psychiatry 1998; 55:593-602
    225. Sun HS, Fann CS, Lane HY, et al: A functional polymorphism in the promoter region of the tryptophan hydroxylase gene is associated with alcohol dependence in one aboriginal group in Taiwan. Alcohol Clin Exp Res 2005; 29:1-7
    226. Gizatullin R, Zaboli G, Jonsson EG, et al: Haplotype analysis reveals tryptophan hydroxylase (TPH) 1 gene variants associated with major depression. Biol Psychiatry 2006; 59:295-300
    227. Illi A, Setala-Soikkeli E, Viikki M, et al: 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. Neuroreport 2009; 20:1125-1128
    228. Viikki M, Kampman O, Illi A, et al: TPH1 218A/C polymorphism is associated with major depressive disorder and its treatment response. Neurosci Lett 2010; 468:80-84
    229. Moncrieff J,Kirsch I: Efficacy of antidepressants in adults. BMJ 2005; 331:155-157
    230. Rush AJ, Warden D, Wisniewski SR, et al: STAR*D: revising conventional wisdom. CNS Drugs 2009; 23:627-647
    231. Kato M,Serretti A: Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 2008;
    232. Peters EJ, Slager SL, McGrath PJ, et al: Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry 2004; 9:879-889
    233. Ham BJ, Lee BC, Paik JW, et al: Association between the tryptophan hydroxylase-1 gene A218C polymorphism and citalopram antidepressant response in a Korean population. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:104-107
    234. Kato M, Wakeno M, Okugawa G, et al: No association of TPH1 218A/C polymorphism with treatment response and intolerance to SSRIs in Japanese patients with major depression. Neuropsychobiology 2007; 56:167-171
    235. Du L, Bakish D,Hrdina PD: Tryptophan hydroxylase gene 218A/C polymorphism is associated with somatic anxiety in major depressive disorder. J Affect Disord 2001; 65:37-44
    236. Souery D, Van Gestel S, Massat I, et al: Tryptophan hydroxylase polymorphism and suicidality in unipolar and bipolar affective disorders: a multicenter association study. Biol Psychiatry 2001; 49:405-409
    237. Ham BJ, Lee MS, Lee HJ, et al: No association between the tryptophan hydroxylase gene polymorphism and major depressive disorders and antidepressant response in a Korean population. Psychiatr Genet 2005; 15:299-301
    238. Chen C, Glatt SJ,Tsuang MT: The tryptophan hydroxylase gene influences risk for bipolar disorder but not major depressive disorder: results of meta-analyses. Bipolar Disord 2008; 10:816-821
    239. Bellivier F, Chaste P,Malafosse A: Association between the TPH gene A218C polymorphism and suicidal behavior: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2004; 124B:87-91
    240. Li D,He L: Further clarification of the contribution of the tryptophan hydroxylase (TPH) gene to suicidal behavior using systematic allelic and genotypic meta-analyses. Hum Genet 2006; 119:233-240
    241. Garriock HA,Hamilton SP: Genetic studies of drug response and side effects in the STAR*D study, part 1. J Clin Psychiatry 2009; 70:1186-1187
    242. Garriock HA,Hamilton SP: Genetic studies of drug response and side effects in the STAR*D study, part 2. J Clin Psychiatry 2009; 70:1323-1325
    243. Serretti A, Lorenzi C, Cusin C, et al: SSRIs antidepressant activity is influenced by G beta 3 variants. Eur Neuropsychopharmacol 2003; 13:117-122
    244. Kraft JB, Slager SL, McGrath PJ, et al: Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol Psychiatry 2005; 58:374-381
    245. Yu YW, Tsai SJ, Liou YJ, et al: Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur Neuropsychopharmacol 2006; 16:498-503
    246. Anttila S, Huuhka K, Huuhka M, et al: Interaction between TPH1 and GNB3 genotypes and electroconvulsive therapy in major depression. J Neural Transm 2007; 114:461-468
    247. Schinkel AH, Wagenaar E, Mol CA, et al: P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97:2517-2524
    248. Uhr M, Tontsch A, Namendorf C, et al: Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 2008; 57:203-209
    249. Bochud M, Eap C, Maillard M, et al: Association of ABCB1 genetic variants with renal function in Africans and in Caucasians. BMC Medical Genomics 2008; 1:21-31
    250. Ishikawa T, Sakurai A, Hirano H, et al: Emerging New Technologies in Pharamcogenomics: Rapid SNP detection, molecular dynamic simulation, and QSAR analysis methods to validate clinically important genetic variants of human ABC Transporter ABCB1 (P-gp/MDR1). Pharmacol. Ther. 2010; 126:69-81
    251. Thiebaut F, Tsuruo T, Hamada H, et al: Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 1987; 84:7735-7738
    252. Ferner RE: ABCB1 (P-glycoprotein) and the clinical pharmacology of adverse drug reactions. Adverse Drug React. Bull. 2010; 2010:1011-1014
    253. Stewart JC, Rand KL, Muldoon MF, et al: A prospective evaluation of the directionality of the depression-inflammation relationship. Brain Behav Immun 2009; 23:936-944
    254. Pizzi C, Manzoli L, Mancini S, et al: Autonomic nervous system, inflammation and preclinical carotid atherosclerosis in depressed subjects with coronary risk factors. Atherosclerosis 2010; 212:292-298
    255. Bjerkeset O, Romild U, Smith GD, et al: The associations of high levels of C-reactive protein with depression and myocardial infarction in 9258 women and men from the HUNT population study. Psychol. Med. 2011; 41:345-352
    256. Capuron L, Su S, Miller AH, et al: Depressive symptoms and metabolic syndrome: is inflammation the underlying link? Biological Psychiatry 2008; 64:896-900
    257. Danner M, Kasl SV, Abramson JL, et al: Association between depression and elevated C-reactive protein. Psychosom. Med. 2003; 65:347-356
    258. Howren MB, Lamkin DM,Suls J: Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosomatic Medicine 2009; 71:171-186
    259. Liukkonen T, Silvennoinen-Kassinen S, Jokelainen J, et al: The association between C-reactive protein levels and depression: Results from the northern Finland 1966 birth cohort study. Biol. Psychiatry 2006; 60:825-830
    260. Miller AH, Maletic V,Raison CL: Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol. Psychiatry 2009; 65:732-741
    261. Kuo HK, Yen CJ, Chang CH, et al: Relation of C-reactive protein to stroke, cognitive disorders, and depression in the general population: systematic review and meta-analysis. Lancet Neurol 2005; 4:371-380
    262. Halder I, Marsland AL, Cheong J, et al: Polymorphisms in the CRP gene moderate an association between depressive symptoms and circulating levels of C-reactive protein. Brain. Behav. Immun. 2010; 24:160-167
    263. Fossati P, Ergis AM,Allilaire JF: Executive functioning in unipolar depression: a review. Encephale 2002; 28:97-107
    264. Gruber S, Rathgeber K, Braunig P, et al: Stability and course of neuropsychological deficits in manic and depressed bipolar patients compared to patients with Major Depression. J Affect Disord 2007; 104:61-71
    265. Paelecke-Habermann Y, Pohl J,Leplow B: Attention and executive functions in remitted major depression patients. J Affect Disord 2005; 89:125-135
    266. Baune BT, Miller R, McAfoose J, et al: The role of cognitive impairment in general functioning in major depression. Psychiatry Res 2010; 176:183-189
    267. Alley DE, Seeman TE, Ki Kim J, et al: Socioeconomic status and C-reactive protein levels in the US population: NHANES IV. Brain Behav Immun 2006; 20:498-504
    268. Owen N, Poulton T, Hay FC, et al: Socioeconomic status, C-reactive protein, immune factors, and responses to acute mental stress. Brain Behav Immun 2003; 17:286-295
    269. Wersching H, Duning T, Lohmann H, et al: Serum C-reactive protein is linked to cerebral microstructural integrity and cognitive function. Neurology 2010; 74:1022-1029
    270. Laurin D, David Curb J, Masaki KH, et al: Midlife C-reactive protein and risk of cognitive decline: a 31-year follow-up. Neurobiol Aging 2009; 30:1724-1727
    271. Chen PS, McQuoid DR, Payne ME, et al: White matter and subcortical gray matter lesion volume changes and late-life depression outcome: a 4-year magnetic resonance imaging study. Int Psychogeriatr 2006; 18:445-456
    272. Duong T, Nikolaeva M,Acton PJ: C-reactive protein-like immunoreactivity in the neurofibrillary tangles of Alzheimer's disease. Brain Res 1997; 749:152-156
    273. Iwamoto N, Nishiyama E, Ohwada J, et al: Demonstration of CRP immunoreactivity in brains of Alzheimer's disease: immunohistochemical study using formic acid pretreatment of tissue sections. Neurosci Lett 1994; 177:23-26
    274. Gimeno D, Kivimaki M, Brunner EJ, et al: Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol. Med. 2009; 39:413-423
    275. Chen WJ, Hsiao CK, Hsiao LL, et al: Performance of the Continuous Performance Test among community samples. Schizophrenia Bulletin 1998; 24:163-174
    276. Hsieh PC, Chu CL, Yang YK, et al: Norms of performance of sustained attention among a community sample: Continuous Performance Test study. Psychiatry and Clinical Neurosciences 2005; 59:170-176
    277. Smid HGOM, de Witte MR, Homminga I, et al: Sustained and Transient Attention in the Continuous Performance Task. J. Clin. Exp. Neuropsychol. 2006; 28:859 - 883
    278. Shimoyama I, Ninchoji T,Uemura K: The Finger-Tapping Test: A Quantitative Analysis. Arch. Neurol. 1990; 47:681-684
    279. Heaton RK, Chelune GJ, Talley JL, et al: Wisconsin Card Sorting Test manual: Revised and expanded, Odessa, FL, Psychological Assessment Resources, 1993
    280. Stratta P, Mancini F, Mattei P, et al: Association between striatal reduction and poor Wisconsin card sorting test performance in patients with schizophrenia. Biological Psychiatry 1997; 42:816-820
    281. Volkow ND, Gur RC, Wang GJ, et al: Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of Psychiatry 1998; 155:344-349
    282. Jacobson NS, Follette WC,Revenstorf D: Psychotherapy outcome research: Methods for reporting variability and evaluating clinical significance. Behavior Therapy 1984; 15:336-352
    283. Lin CH, Lin KS, Lin CY, et al: Time to rehospitalization in patients with major depressive disorder taking venlafaxine or fluoxetine. J. Clin. Psychiatry 2008; 69:54-59
    284. Farabaugh A, Sonawalla S, Johnson DP, et al: Early improvements in anxiety, depression, and anger/hostility symptoms and response to antidepressant treatment. Ann. Clin. Psychiatry 2010; 22:166-171
    285. Kemp DE, Ganocy SJ, Brecher M, et al: Clinical value of early partial symptomatic improvement in the prediction of response and remission during short-term treatment trials in 3369 subjects with bipolar I or II depression. J. Affect. Disord. 2010; [Epub ahead of print]
    286. O'Brien SM, Scully P, Fitzgerald P, et al: Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J. Psychiatr. Res. 2007; 41:326-331
    287. Yasojima K, Schwab C, McGeer EG, et al: Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer's disease. Brain Res. 2000; 887:80-89
    288. Harley J, Luty S, Carter J, et al: Elevated C-reactive protein in depression: a predictor of good long-term outcome with antidepressants and poor outcome with psychotherapy. J. Psychopharmacol. (Oxf). 2010; 24:625-626
    289. Zhu CB, Blakely RD,Hewlett WA: The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 2006; 31:2121-2131
    290. Piletz JE, Halaris A, Iqbal O, et al: Pro-inflammatory biomakers in depression: Treatment with venlafaxine. World J Biol Psychiatry 2008; 1-11
    291. O'Brien SM, Scott LV,Dinan TG: Antidepressant therapy and C-reactive protein levels. Br J Psychiatry 2006; 188:449-452
    292. Tousoulis D, Drolias A, Antoniades C, et al: Antidepressive treatment as a modulator of inflammatory process in patients with heart failure: effects on proinflammatory cytokines and acute phase protein levels. Int J Cardiol 2009; 134:238-243
    293. Tuglu C, Kara SH, Caliyurt O, et al: Increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder. Psychopharmacology (Berl) 2003; 170:429-433
    294. Wessel J, Moratorio G, Rao F, et al: C-reactive protein, an 'intermediate phenotype' for inflammation: human twin studies reveal heritability, association with blood pressure and the metabolic syndrome, and the influence of common polymorphism at catecholaminergic/beta-adrenergic pathway loci. J Hypertens 2007; 25:329-343
    295. Halder I, Marsland AL, Cheong J, et al: Polymorphisms in the CRP gene moderate an association between depressive symptoms and circulating levels of C-reactive protein. Brain Behav Immun 2009;
    296. Hamer M, Batty GD, Marmot MG, et al: Anti-depressant medication use and C-reactive protein: results from two population-based studies. Brain Behav Immun 2011; 25:168-173
    297. Jindal RD: Long-term antidepressant use and risk for diabetes: cause for concern and optimism. Am J Psychiatry 2009; 166:1065-1066; author reply 1066
    298. Wu CS, Wang SC, Cheng YC, et al: Association of cerebrovascular events with antidepressant use: a case-crossover study. Am J Psychiatry 2011; 168:511-521
    299. Clark IA, Alleva LM,Vissel B: The roles of TNF in brain dysfunction and disease. Pharmacol. Ther. 2010; 128:519-548
    300. Raison CL, Borisov AS, Majer M, et al: Activation of central nervous system inflammatory pathways by interferon-alpha: relationship to monoamines and depression. Biol. Psychiatry 2009; 65:296-303
    301. Yirmiya R,Goshen I: Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 2011; 25:181-213
    302. Yeh ET,Willerson JT: Coming of age of C-reactive protein: using inflammation markers in cardiology. Circulation 2003; 107:370-371
    303. Elovainio M, Aalto AM, Kivimaki M, et al: Depression and C-reactive protein: population-based Health 2000 Study. Psychosom. Med. 2009; 71:423-430
    304. Geerlings MI, Schoevers RA, Beekman AT, et al: Depression and risk of cognitive decline and Alzheimer's disease. Results of two prospective community-based studies in The Netherlands. Br. J. Psychiatry 2000; 176:568-575
    305. Capuron L,Miller AH: Immune system to brain signaling: Neuropsychopharmacological implications. Pharmacol. Ther. 2011; 130:226-238
    306. Liu J, Wang MW, Gu P, et al: Microglial activation and age-related dopaminergic neurodegeneration in MPTP-treated SAMP8 mice. Brain Res 2010; 1345:213-220
    307. Meyer U,Feldon J: Prenatal exposure to infection: a primary mechanism for abnormal dopaminergic development in schizophrenia. Psychopharmacology 2009; 206:587-602
    308. Ozawa K, Hashimoto K, Kishimoto T, et al: Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 2006; 59:546-554
    309. Chen PS, Yang YK, Lee YS, et al: Correlation between different memory systems and striatal dopamine D2/D3 receptor density: a single photon emission computed tomography study. Psychol Med 2005; 35:197-204
    310. Saczynski JS, Beiser A, Seshadri S, et al: Depressive symptoms and risk of dementia: the Framingham Heart Study. Neurology 2010; 75:35-41
    311. Dantzer R, O'Connor JC, Lawson MA, et al: Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology 2011; 36:426-436
    312. Maes M, Leonard B, Fernandez A, et al: (Neuro)inflammation and neuroprogression as new pathways and drug targets in depression: From antioxidants to kinase inhibitors. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:659-663
    313. Akhondzadeh S, Jafari S, Raisi F, et al: Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress. Anxiety 2009; 26:607-611
    314. Muller N, Schwarz MJ, Dehning S, et al: The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol. Psychiatry 2006; 11:680-684
    315. Cunha AB, Andreazza AC, Gomes FA, et al: Investigation of serum high-sensitive C-reactive protein levels across all mood states in bipolar disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2008; 258:300-304
    316. Padmos RC, Hillegers MH, Knijff EM, et al: A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes. Arch Gen Psychiatry 2008; 65:395-407
    317. Steffens DC, Pieper CF, Bosworth HB, et al: Biological and social predictors of long-term geriatric depression outcome. Int. Psychogeriatr. 2005; 17:41-56
    318. Dickinson WJ, Potter GG, Hybels CF, et al: Change in stress and social support as predictors of cognitive decline in older adults with and without depression. Int. J. Geriatr. Psychiatry 2011; n/a-n/a
    319. Paykel ES, Cooper Z, Ramana R, et al: Life events, social support and marital relationships in the outcome of severe depression. Psychological Medicine 1996; 26:121-133
    320. Bosworth HB, McQuoid DR, George LK, et al: Time-to-Remission From Geriatric Depression: Psychosocial and Clinical Factors. American Journal of Geriatric Psych 2002; 10:551-559
    321. Paykel ES, Cooper Z, Ramana R, et al: Life events, social support and marital relationships in the outcome of severe depression. Psychological Medicine 1996; 26:121-133
    322. Tien Chen LEE, Yen Kuang Y, Po See C, et al: Different dimensions of social support for the caregivers of patients with schizophrenia: Main effect and stress-buffering models. Psychiatry Clin. Neurosci. 2006; 60:546-550
    323. Olstad R, Sexton H,Søgaard AJ: The Finnmark Study. A prospective population study of the social support buffer hypothesis, specific stressors and mental distress. Soc. Psychiatry Psychiatr. Epidemiol. 2001; 36:582-589
    324. Lin N, Woelfel MW,Light SC: The Buffering Effect of Social Support Subsequent to an Important Life Event. J. Health Soc. Behav. 1985; 26:247-263
    325. Johnson SL, Winett CA, Meyer B, et al: Social support and the course of bipolar disorder. J. Abnorm. Psychol. 1999; 108:558-566
    326. Bagby RM, Ryder AG,Cristi C: Psychosocial and clinical predictors of response to pharmacotherapy for depression. J. Psychiatry Neurosci. 2002; 27:250-257
    327. Belmaker RH,Agam G: Major Depressive Disorder. N Engl J Med 2008; 358:55-68
    328. Marsh S, Kwok P,McLeod HL: SNP databases and pharmacogenetics: great start, but a long way to go. Hum Mutat 2002; 20:174-179
    329. Kung S,Hwang J: Neural networks for intelligent multimedia processing. Proceedings of the IEEE 86 1998; 1244-1272
    330. Erb R: Introduction to backpropagation neural network computation. Pharm Res 1993; 10:165-170
    331. Lan TH, Loh EW, Wu MS, et al: Performance of a neuro-fuzzy model in predicting weight changes of chronic schizophrenic patients exposed to antipsychotics. Br J Pharmacol 2008;
    332. Serretti A, Zanardi R, Mandelli L, et al: A neural network model for combining clinical predictors of antidepressant response in mood disorders. Journal of Affective Disorders 2007; 98:239-245
    333. Serretti A, Olgiati P, Liebman MN, et al: Clinical prediction of antidepressant response in mood disorders: linear multivariate vs. neural network models. Psychiatry Research 2007; 152:223-231
    334. Salomoni GP, Grassi MP, Mosini PP, et al: Artificial Neural Network Model for the Prediction of Obsessive-Compulsive Disorder Treatment Response. Journal of Clinical Psychopharmacology 2009; 29:343-349
    335. Serre D, Montpetit A, Pare G, et al: Correction of population stratification in large multi-ethnic association studies. PLoS ONE 2008; 3:e1382
    336. Kahn JD: Pharmacogenetics and ethnically targeted therapies: racial drugs need to be put in context. BMJ (Clinical research ed 2005; 330:1508; author reply 1508
    337. Robertson GR, Grant DM,Piquette-Miller M: Pharmacogenetics of pharmacoecology: which route to personalized medicine? Clin Pharmacol Ther 2009; 85:343-348
    338. Caspi A, Sugden K, Moffitt TE, et al: Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301:386-389
    339. Ressler KJ,Nemeroff CB: Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depression & Anxiety 2000; 12 Suppl 1:2-19
    340. Chaouloff F: Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Research - Brain Research Reviews 1993; 18:1-32
    341. Graeff FG: Role of 5-HT in defensive behavior and anxiety. Reviews in the Neurosciences 1993; 4:181-211
    342. Walther DJ,Bader M: A unique central tryptophan hydroxylase isoform. Biochemical Pharmacology 2003; 66:1673-1680
    343. Walther DJ, Peter JU, Bashammakh S, et al: Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003; 299:76
    344. Nielsen DA, Jenkins GL, Stefanisko KM, et al: Sequence, splice site and population frequency distribution analyses of the polymorphic human tryptophan hydroxylase intron 7. Brain Research 1997; 45:145-148
    345. Wedlund PJ: The CYP2C19 enzyme polymorphism. Pharmacology 2000; 61:174-183
    346. de Leon J, Armstrong SC,Cozza KL: Clinical Guidelines for Psychiatrists for the Use of Pharmacogenetic Testing for CYP450 2D6 and CYP450 2C19. Psychosomatics 2006; 47:75-85
    347. Amchin J, Ereshefsky L, Zarycranski W, et al: Effect of venlafaxine versus fluoxetine on metabolism of dextromethorphan, a CYP2D6 probe. J Clin Pharmacol 2001; 41:443-451
    348. Halder I, Marsland AL, Cheong J, et al: Polymorphisms in the CRP gene moderate an association between depressive symptoms and circulating levels of C-reactive protein. Brain Behav Immun 2010; 24:160-167
    349. Duman RS,Newton SS: Epigenetic Marking and Neuronal Plasticity. Biological Psychiatry 2007; 62:1-3
    350. International Warfarin Pharmacogenetics C, Klein TE, Altman RB, et al: Estimation of the warfarin dose with clinical and pharmacogenetic data. New England Journal of Medicine 2009; 360:753-764
    351. Salinger DH, Shen DD, Thummel K, et al: Pharmacogenomic trial design: use of a PK/PD model to explore warfarin dosing interventions through clinical trial simulation. Pharmacogenetics and Genomics 2009; 19:956-971
    352. Rogers JF, Nafziger AN,Bertino JS, Jr.: Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome P450-metabolized drugs. Am J Med 2002; 113:746-750
    353. Ma Q,Lu AYH: Pharmacogenetics, Pharmacogenomics, and Individualized Medicine. Pharmacol. Rev. 2011; DOI:10.1124/pr.1110.003533
    354. Daly A: Pharmacogenomics of anticoagulants: steps toward personal dosage. Genome Medicine 2009; 1:1-4

    下載圖示 校內:2014-06-23公開
    校外:2016-06-23公開
    QR CODE