| 研究生: |
羅乃章 Lo, Nai-Chang |
|---|---|
| 論文名稱: |
鋅銅鎳與錫銅鎳合金以電化學合金去合金法製備高表面積電催化電極之研究 Electrochemical alloying and dealloying of ZnCuNi and SnCuNi alloys to prepare high surface electrocatalytic electrodes |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 深共熔溶劑 、去合金 、電沈積 、鋅銅鎳 、錫銅鎳 、電催化 |
| 外文關鍵詞: | Deep eutectic solvent, Dealloying, ZnCuNi, SnCuNi, Electrodeposition, Electrocatalytic |
| 相關次數: | 點閱:51 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用電化學法於深共熔溶劑(deep eutectic solvent, DES)中製備鋅銅鎳以及錫銅鎳三元合金材料。進行合金電鍍之前,先利用循環伏安法探討個別單一金屬離子與分別混合二元及三元金屬離子在Ethaline中的電化學行為。透過調整溶液中金屬離子濃度、控制電位或是脈衝電鍍與時間的改變獲得不同形貌以及成分組成的三元合金鍍層。後續則選擇富含鋅或是錫的三元合金用於電化學去合金實驗。
本研究所製備之鋅銅鎳與三元合金無法在所使用的Ethaline深共熔溶劑中以電化學去合金法選擇性去除鋅金屬以達到製備出孔洞電極的目的,其原因在該三元合金組成金屬於所使用的深共熔溶劑中之氧化電位過於靠近,無法僅去除鋅金屬而獲得明顯的孔洞形貌以及金屬成分變化。故改採兩階段製備的方式,改以在鹼性水溶液中進行電化學去合金實驗。在鹼性水溶液中,鋅銅鎳三元合金透過電化學陽極去合金(anodic dealloying)去除合金中鋅與銅並且獲得表面富含鎳之三元合金孔洞狀的結構。此外,鋅銅鎳三元合金也能藉由在鹼性溶液中還原硝酸根的方式進行陰極去合金(cathodic dealloying)製備出電極表面為富含銅的三元合金孔洞材料。後者可稱為具自增強效應之陰極去合金電極。此研究所發現之獨特的陰極去合金法可應用於其它鋅合金之電化學去合金過程,且兩種不同的去合金法可提供不同的電極表面組成,將可應用於不同表面組成之電催化材料的製備。
The electrodeposition of ZnCuNi and SnCuNi ternary alloys were carried out in Ethaline deep eutectic solvent based on choline chloride and ethylene glycol (in mole ratio 1: 2) at 353K with different electrochemical techniques. The obtained deposits were used as the precursors for the following processes of electrochemical dealloying to prepare porous alloy electrodes. Before the electrodeposition of ternary alloys would be conducted, voltammetry was employed to study the electrochemical behavior of individual metal ions, mixtures of each two of them, and the ternary mixture. The Zn- and Sn-rich alloy deposits can be obtained from constant potential deposition and pulse deposition, respectively. Electrochemical selective dissolution of Zn from ZnCuNi deposits could not be achieved in Ethaline because the oxidation potentials of the three species are too close to each other. A two-step process was developed in which the electrochemical dealloying was performed in aqueous NaOH electrolyte. It was found that Cu was also dealloyed along with Zn from the ZnCuNi alloys during the process of anodic dealloying; porous ZnCuNi alloys with Ni-rich surface were produced. Oppositely, porous ZnCuNi alloys with Cu-rich surface were obtained via cathodic dealloying of Zn during the electrolysis of nitrate reduction in aqueous NaOH. The latter is called “self-enhancing electrode formed by in-situ cathodic dealloying”. Both dealloyed porous electrodes showed improved activities toward nitrate reduction, especially for the cathodically dealloyed one. The reason is due to the porous ZnCuNi prepared by cathodic dealloying exhibited Cu-rich surface. This study demonstrates a new and facile cathodic dealloying that is suitable to dealloy Zn from Zn-based alloys without damage other components. On the other hand, this study indicates that different dealloying approaches formed electrodes with different properties, which will be important for various applications.
1. Wilkes, J. S., A short history of ionic liquids - from molten salts to neoteric solvents. Green Chem. 2002, 4 (2), 73-80.
2. Cao, Y.; Gao, C. Y.; Yang, X. W.; Wang, C.; Yan, J.; Shi, D. H.; Chen, Y.; Cui, Y. H., The Suppression Effect of Functional Gradient Design on Concentration Polarization of Multiple Cations Molten Salt Electrolyte for Thermal Batteries. J. Electrochem. Soc. 2021, 168 (1), 7.
3. Fukumoto, M.; Sugiuchi, K.; Nakajima, K., Formation of porous Ni surface by electrodeposition and dissolution in molten salt. Int. J. Hydrog. Energy 2020, 45 (53), 28252-28259.
4. Ouchi, T.; Wu, S.; Okabe, T. H., Recycling of Gold Using Anodic Electrochemical Deposition from Molten Salt Electrolyte. J. Electrochem. Soc. 2020, 167 (12), 6.
5. CAS Registry Number 78041-07-3.
6. Garlitz, J. A.; Summers, C. A.; Flowers, R. A.; Borgstahl, G. E. O., Ethylammonium nitrate: a protein crystallization reagent. Acta Crystallogr. Sect. D-Biol. Crystallogr. 1999, 55, 2037-2038.
7. Pajak, M.; Hubkowska, K.; Czerwinski, A., Nitrate protic ionic liquids as electrolytes: Towards hydrogen sorption in Pd. Electrochim. Acta 2019, 324, 10.
8. Han, Q.; Smith, K. M.; Darmanin, C.; Ryan, T. M.; Drummond, C. J.; Greaves, T. L., Lysozyme conformational changes with ionic liquids: Spectroscopic, small angle x-ray scattering and crystallographic study. J. Colloid Interface Sci. 2021, 585, 433-443.
9. Zarrougui, R.; Dhahbi, M.; Lemordan, D., Electrochemical behaviour of iodine redox couples in aprotic and protic RTILs: 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and ethylammonium nitrate. J. Electroanal. Chem. 2014, 717, 189-195.
10. Hurley, F. H.; Wier, T. P., THE ELECTRODEPOSITION OF ALUMINUM FROM NONAQUEOUS SOLUTIONS AT ROOM TEMPERATURE. J. Electrochem. Soc. 1951, 98 (5), 207-212.
11. Gale, R. J.; Gilbert, B.; Osteryoung, R. A., RAMAN-SPECTRA OF MOLTEN ALUMINUM-CHLORIDE - 1-BUTYLPYRIDINIUM CHLORIDE SYSTEMS AT AMBIENT-TEMPERATURES. Inorg. Chem. 1978, 17 (10), 2728-2729.
12. Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L., DIALKYLIMIDAZOLIUM CHLOROALUMINATE MELTS - A NEW CLASS OF ROOM-TEMPERATURE IONIC LIQUIDS FOR ELECTROCHEMISTRY, SPECTROSCOPY, AND SYNTHESIS. Inorg. Chem. 1982, 21 (3), 1263-1264.
13. Wilkes, J. S.; Zaworotko, M. J., AIR AND WATER STABLE 1-ETHYL-3-METHYLIMIDAZOLIUM BASED IONIC LIQUIDS. J. Chem. Soc.-Chem. Commun. 1992, (13), 965-967.
14. Endres, F.; El Abedin, S. Z., Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys. 2006, 8 (18), 2101-2116.
15. Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M., Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 1996, 35 (5), 1168-1178.
16. MacFarlane, D. R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M., Pyrrolidinium imides: A new family of molten salts and conductive plastic crystal phases. J. Phys. Chem. B 1999, 103 (20), 4164-4170.
17. El Abedin, S. Z.; Endres, F., Ionic liquids: The link to high-temperature molten salts? Accounts Chem. Res. 2007, 40 (11), 1106-1113.
18. Cheek, G. T.; O'Grady, W. E.; El Abedin, S. Z.; Moustafa, E. M.; Endres, F., Studies on the electrodeposition of magnesium in ionic liquids. J. Electrochem. Soc. 2008, 155 (1), D91-D95.
19. Wibowo, R.; Aldous, L.; Jacobs, R. M. J.; Manan, N. S. A.; Compton, R. G., Monitoring potassium metal electrodeposition from an ionic liquid using in situ electrochemical-X-ray photoelectron spectroscopy. Chem. Phys. Lett. 2011, 509 (1-3), 72-76.
20. Glukhov, L. M.; Greish, A. A.; Kustov, L. M., Electrodeposition of Rare Earth Metals Y, Gd, Yb in Ionic Liquids. Russ. J. Phys. Chem. A 2010, 84 (1), 104-108.
21. Carlin, R. T.; De Long, H. C.; Fuller, J.; Trulove, P. C., Microelectrode evaluation of transition metal-aluminum alloy electrodepositions in chloroaluminate ionic liquids. J. Electrochem. Soc. 1998, 145 (5), 1598-1607.
22. Stafford, G. R.; Hussey, C. L., Electrodeposition of transition metal-aluminum alloys from chloroaluminate molten salts. Adv. Electrochem. Sci. Eng. 2001, 7, 275-347.
23. Huang, J. F.; Sun, I. W., Electrodeposition of PtZn in a Lewis acidic ZnCl2-1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochim. Acta 2004, 49 (19), 3251-3258.
24. Huang, J. F.; Sun, I. W., Nonanomalous Electrodeposition of zinc-iron alloys in an acidic zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid. J. Electrochem. Soc. 2004, 151 (1), C8-C14.
25. Huang, J. F.; Sun, I. W., Electrochemical studies of tin in zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquids. J. Electrochem. Soc. 2003, 150 (6), E299-E306.
26. Huang, J. F.; Sun, I. W., Electrochemical study of cadmium in acidic zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquids. J. Electrochem. Soc. 2002, 149 (9), E348-E355.
27. Pai, C.; Su, C. J.; Hsieh, Y. T.; Chen, P. Y.; Sun, I. W., Voltammetric Study of Selenium and Two-Stage Electrodeposition of Photoelectrochemically Active Zinc Selenide Semiconductor Films in Ionic Liquid Zinc Chloride-1-Ethyl-3-Methylimidazolium Chloride. J. Electrochem. Soc. 2015, 162 (7), D243-D249.
28. Yang, J. M.; Hsieh, Y. T.; Zhuang, D. X.; Sun, I. W., Direct electrodeposition of FeCoZn wire arrays from a zinc chloride-based ionic liquid. Electrochem. Commun. 2011, 13 (11), 1178-1181.
29. Yang, J. M.; Hsieh, Y. T.; Chu-Tien, T. T.; Sun, I. W., Electrodeposition of Distinct One-Dimensional Zn Biaxial Microbelt from the Zinc Chloride-1-Ethyl-3-methylidazolium Chloride Ionic Liquid. J. Electrochem. Soc. 2011, 158 (5), D235-D239.
30. Yang, J. M.; Gou, S. P.; Sun, I. W., Single-step large-scale and template-free electrochemical growth of Ni-Zn alloy filament arrays from a zinc chloride based ionic liquid. Chem. Commun. 2010, 46 (15), 2686-2688.
31. Hsieh, Y. T.; Lai, M. C.; Huang, H. L.; Sun, I. W., Speciation of cobalt-chloride-based ionic liquids and electrodeposition of Co wires. Electrochim. Acta 2014, 117, 217-223.
32. Tai, C. C.; Su, F. Y.; Sun, I. W., Electrodeposition of palladium-silver in a Lewis basic 1-ethyl-3-methylimidazolium chloride-tetrafluoroborate ionic liquid. Electrochim. Acta 2005, 50 (28), 5504-5509.
33. Su, F. Y.; Huang, J. F.; Sun, I. W., Galvanostatic deposition of palladium-gold alloys in a lewis basic EMI-Cl-BF4 ionic liquid. J. Electrochem. Soc. 2004, 151 (12), C811-C815.
34. Yang, M. H.; Sun, I. W., Electrodeposition of antimony in a water-stable 1-ethyl-3-methylimidazolium chloride tetrafluoroborate room temperature ionic liquid. J. Appl. Electrochem. 2003, 33 (11), 1077-1084.
35. Chen, P. Y.; Sun, I. W., Electrochemistry of Cd(II) in the basic 1-ethyl-3-methylimidazolium chloride/tetrafluoroborate room temperature molten salt. Electrochim. Acta 2000, 45 (19), 3163-3170.
36. Jou, L. S.; Chang, J. K.; Twhang, T. J.; Sun, I. W., Electrodeposition of Palladium-Copper Films from 1-Ethyl-3-methylimidazolium Chloride-Tetrafluoroborate Ionic Liquid on Indium Tin Oxide Electrodes. J. Electrochem. Soc. 2009, 156 (6), D193-D197.
37. Tsai, R. W.; Hsieh, Y. T.; Chen, P. Y.; Sun, I. W., Voltammetric study and electrodeposition of tellurium, lead, and lead telluride in room-temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate. Electrochim. Acta 2014, 137, 49-56.
38. Hsiu, S. I.; Sun, I. W., Electrodeposition behaviour of cadmium telluride from 1-ethyl-3-methylimidazolium chloride tetrafluoroborate ionic liquid. J. Appl. Electrochem. 2004, 34 (10), 1057-1063.
39. Yang, M. H.; Yang, M. C.; Sun, I. W., Electrodeposition of indium antimonide from the water-stable 1-ethyl-3-methylimidazolium chloride/tetrafluoroborate ionic liquid. J. Electrochem. Soc. 2003, 150 (8), C544-C548.
40. Deng, M. J.; Chen, P. Y.; Leong, T. I.; Sun, I. W.; Chang, J. K.; Tsai, W. T., Dicyanamide anion based ionic liquids for electrodeposition of metals. Electrochem. Commun. 2008, 10 (2), 213-216.
41. Deng, M. J.; Chang, J. K.; Leong, T. I.; Fang, S. W.; Chen, P. Y.; Sun, I. W., Electrodeposition of Nanostructured Sn in 1-ethyl-3-methylimidazolium Dicyanamide Room Temperature Ionic Liquid. Electrochemistry 2009, 77 (8), 588-590.
42. Huang, H. Y.; Chen, P. Y., Voltammetric behavior of Pd(II) and Ni(II) ions and electrodeposition of PdNi bimetal in N-butyl-N-methylpyrrolidinium dicyanamide ionic liquid. Electrochim. Acta 2011, 56 (5), 2336-2343.
43. Steichen, M.; Djemour, R.; Gutay, L.; Guillot, J.; Siebentritt, S.; Dale, P. J., Direct Synthesis of Single-Phase p-Type SnS by Electrodeposition from a Dicyanamide Ionic Liquid at High Temperature for Thin Film Solar Cells. J. Phys. Chem. C 2013, 117 (9), 4383-4393.
44. Wu, M. X.; Brooks, N. R.; Schaltin, S.; Binnemans, K.; Fransaer, J., Electrodeposition of germanium from the ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide. Phys. Chem. Chem. Phys. 2013, 15 (14), 4955-4964.
45. Shrestha, S.; Biddinger, E. J., Palladium electrodeposition in 1-butyl-1-methylpyrrolidinium dicyanamide ionic liquid. Electrochim. Acta 2015, 174, 254-263.
46. Hsieh, Y. T.; Chen, Y. C.; Sun, I. W., 1-Butyl-1-Methylpyrrolidinium Dicyanamide Room Temperature Ionic Liquid for Electrodeposition of Antimony. J. Electrochem. Soc. 2016, 163 (5), D188-D193.
47. Hsieh, Y. T.; Chen, Y. C.; Sun, I. W., Electrodeposition of Stoichiometric Indium Antimonide from Room-Temperature Ionic Liquid 1-Butyl-1-Methylpyrrolidinium Dicyanamide. ChemElectroChem 2016, 3 (4), 638-643.
48. Lo, N. C.; Chung, P. C.; Chuang, W. J.; Hsu, S. C. N.; Sun, I. W.; Chen, P. Y., Voltammetric Study and Electrodeposition of Ni(II)/Fe(II) in the Ionic Liquid 1-Butyl-1-Methylpyrrolidinium Dicyanamide. J. Electrochem. Soc. 2016, 163 (2), D9-D16.
49. Chiu, C. W.; Sun, I. W.; Chen, P. Y., Electrodeposition and Characterization of CoP Compounds Produced from the Hydrophilic Room-Temperature Ionic Liquid 1-Butyl-1-Methylpyrrolidinium Dicyanamide. J. Electrochem. Soc. 2017, 164 (8), H5018-H5025.
50. Rahali, S.; Zarrougui, R.; Marzouki, M.; Ghodbane, O., Electrodeposition of silver from the ionic liquid Butylpyridinium dicyanamide. J. Electroanal. Chem. 2020, 871, 11.
51. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V., Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, (1), 70-71.
52. Abbott, A. P.; Capper, G.; Davies, D. L.; McKenzie, K. J.; Obi, S. U., Solubility of metal oxides in deep eutectic solvents based on choline chloride. J. Chem. Eng. Data 2006, 51 (4), 1280-1282.
53. Abbott, A. P.; Barron, J. C.; Ryder, K. S.; Wilson, D., Eutectic-based ionic liquids with metal-containing anions and cations. Chem.-Eur. J. 2007, 13 (22), 6495-6501.
54. Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K., Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126 (29), 9142-9147.
55. Basaiahgari, A.; Panda, S.; Gardas, R. L., Effect of Ethylene, Diethylene, and Triethylene Glycols and Glycerol on the Physicochemical Properties and Phase Behavior of Benzyltrimethyl and Benzyltributylammonium Chloride Based Deep Eutectic Solvents at 283.15-343.15 K. J. Chem. Eng. Data 2018, 63 (7), 2613-2627.
56. Shafie, M. H.; Yusof, R.; Gan, C. Y., Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties. J. Mol. Liq. 2019, 288, 6.
57. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114 (21), 11060-11082.
58. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R., Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures. Inorg. Chem. 2004, 43 (11), 3447-3452.
59. Cantwell, P. A., Electrodeposition from Ionic Liquids. Edited by F. Endres, A. P. Abbott, D. R. MacFarlane. Trans. Inst. Met. Finish. 2008, 86 (4), 182.
60. Florindo, C.; Oliveira, F. S.; Rebelo, L. P. N.; Fernandes, A. M.; Marrucho, I. M., Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2 (10), 2416-2425.
61. Abbott, A. P.; Al-Barzinjy, A. A.; Abbott, P. D.; Frisch, G.; Harris, R. C.; Hartley, J.; Ryder, K. S., Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3 center dot 6H(2)O and urea. Phys. Chem. Chem. Phys. 2014, 16 (19), 9047-9055.
62. Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; Gurkan, B.; Maginn, E. J.; Ragauskas, A.; Dadmun, M.; Zawodzinski, T. A.; Baker, G. A.; Tuckerman, M. E.; Savinell, R. F.; Sangoro, J. R., Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121 (3), 1232-1285.
63. Abbott, A. P., Model for the conductivity of ionic liquids based on an infinite dilution of holes. ChemPhysChem 2005, 6 (12), 2502-2505.
64. Zhang, Q. H.; Vigier, K. D.; Royer, S.; Jerome, F., Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 2012, 41 (21), 7108-7146.
65. Kityk, A. A.; Shaiderov, D. A.; Vasil'eva, E. A.; Protsenko, V. S.; Danilov, F. I., Choline chloride based ionic liquids containing nickel chloride: Physicochemical properties and kinetics of Ni(II) electroreduction. Electrochim. Acta 2017, 245, 125-137.
66. Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V., Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem. Commun. 2001, (19), 2010-2011.
67. Hsiu, S. I.; Huang, J. F.; Sun, I. W.; Yuan, C. H.; Shiea, J., Lewis acidity dependency of the electrochemical window of zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquids. Electrochim. Acta 2002, 47 (27), 4367-4372.
68. Lin, Y. F.; Sun, I. W., Electrodeposition of zinc from a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Electrochim. Acta 1999, 44 (16), 2771-2777.
69. Sitze, M. S.; Schreiter, E. R.; Patterson, E. V.; Freeman, R. G., Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations. Inorg. Chem. 2001, 40 (10), 2298-2304.
70. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K., Ionic liquid analogues formed from hydrated metal salts. Chem.-Eur. J. 2004, 10 (15), 3769-3774.
71. Abbott, A. R.; Capper, G.; Gray, S., Design of improved deep eutectic solvents using hole theory. ChemPhysChem 2006, 7 (4), 803-806.
72. Abbott, A. P.; Harris, R. C.; Ryder, K. S., Application of hole theory to define ionic liquids by their transport properties. J. Phys. Chem. B 2007, 111 (18), 4910-4913.
73. Hou, Y. W.; Gu, Y. Y.; Zhang, S. M.; Yang, F.; Ding, H. M.; Shan, Y. K., Novel binary eutectic mixtures based on imidazole. J. Mol. Liq. 2008, 143 (2-3), 154-159.
74. Abbott, A. P.; Barron, J. C.; Ryder, K. S., Electrolytic deposition of Zn coatings from ionic liquids based on choline chloride. Trans. Inst. Metal Finish. 2009, 87 (4), 201-207.
75. Abbott, A. P.; El Ttaib, K.; Frisch, G.; McKenzie, K. J.; Ryder, K. S., Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Phys. Chem. Chem. Phys. 2009, 11 (21), 4269-4277.
76. Abbott, A. P.; Ballantyne, A.; Harris, R. C.; Juma, J. A.; Ryder, K. S.; Forrest, G., A Comparative Study of Nickel Electrodeposition Using Deep Eutectic Solvents and Aqueous Solutions. Electrochim. Acta 2015, 176, 718-726.
77. Wang, Z. W.; Ru, J. J.; Hua, Y. X.; Bu, J. J.; Geng, X.; Zhang, W. W., Electrodeposition of Sn powders with pyramid chain and dendrite structures in deep eutectic solvent: roles of current density and SnCl2 concentration. J. Solid State Electrochem. 2021, 25 (3), 1111-1120.
78. Cao, X. Z.; Xu, L. L.; Wang, C.; Li, S. Y.; Wu, D.; Shi, Y. Y.; Liu, F. G.; Xue, X. X., Electrochemical Behavior and Electrodeposition of Sn Coating from Choline Chloride-Urea Deep Eutectic Solvents. Coatings 2020, 10 (12), 10.
79. Ceblin, M. U.; Zeller, S.; Schick, B.; Kibler, L. A.; Jacob, T., Electrodeposition of Ag onto Au(111) from Deep Eutectic Solvents. ChemElectroChem 2019, 6 (1), 141-146.
80. Bernasconi, R.; Lucotti, A.; Nobili, L.; Magagnin, L., Ruthenium Electrodeposition from Deep Eutectic Solvents. J. Electrochem. Soc. 2018, 165 (13), D620-D627.
81. Panzeri, G.; Pedrazzetti, L.; Rinaldi, C.; Nobili, L.; Magagnin, L., Electrodeposition of Nanostructured Cobalt Films from Choline Chloride-Ethylene Glycol Deep Eutectic Solvent. J. Electrochem. Soc. 2018, 165 (11), D580-D583.
82. Barrado, E.; Garcia, S.; Rodriguez, J. A.; Castrillejo, Y., Electrodeposition of indium on W and Cu electrodes in the deep eutectic solvent choline chloride-ethylene glycol (1:2). J. Electroanal. Chem. 2018, 823, 106-120.
83. Winiarski, J.; Kozak, A.; Szczygiel, B., Electrodeposition of chromium coatings from environmentally friendly Cr(III)-based deep eutectic solvents as the alternative to classic Cr(VI) chrome plating. Przem. Chem. 2018, 97 (8), 1340-1343.
84. Hsieh, L. Y.; Fong, J. D.; Hsieh, Y. Y.; Wang, S. P.; Sun, I. W., Electrodeposition of Bismuth in a Choline Chloride/Ethylene Glycol Deep Eutectic Solvent under Ambient Atmosphere. J. Electrochem. Soc. 2018, 165 (9), D331-D338.
85. Gomez, E.; Cojocaru, P.; Magagnin, L.; Valles, E., Electrodeposition of Co, Sm and SmCo from a Deep Eutectic Solvent. J. Electroanal. Chem. 2011, 658 (1-2), 18-24.
86. Abbott, A. P.; Capper, G.; McKenzie, K. J.; Ryder, K. S., Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride. J. Electroanal. Chem. 2007, 599 (2), 288-294.
87. Chu, Q. W.; Wang, W.; Liang, J.; Hao, J. C.; Zhen, Z. S., Electrodeposition of high Co content nanocrystalline Zn-Co alloys from a choline chloride-based ionic liquid. Mater. Chem. Phys. 2013, 142 (2-3), 539-544.
88. Vijayakumar, J.; Mohan, S.; Kumar, S. A.; Suseendiran, S. R.; Pavithra, S., Electrodeposition of Ni-Co-Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution. Int. J. Hydrog. Energy 2013, 38 (25), 10208-10214.
89. Gao, M. Y.; Yang, C.; Zhang, Q. B.; Yu, Y. W.; Hua, Y. X.; Li, Y.; Dong, P., Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution. Electrochim. Acta 2016, 215, 609-616.
90. Abbott, A. P.; Alhaji, A. I.; Ryder, K. S.; Horne, M.; Rodopoulos, T., Electrodeposition of copper-tin alloys using deep eutectic solvents. Trans. Inst. Metal Finish. 2016, 94 (2), 104-113.
91. Li, R. Q.; Dong, Q. J.; Xia, J.; Luo, C. H.; Sheng, L. Q.; Cheng, F.; Liang, J., Electrodeposition of composition controllable Zn-Ni coating from water modified deep eutectic solvent. Surf. Coat. Technol. 2019, 366, 138-145.
92. Rao, S. C.; Zou, X. L.; Wang, S. J.; Shi, T. Y.; Lu, Y.; Ji, L.; Hsu, H. Y.; Xu, Q.; Lu, X. G., Electrodeposition of Porous Sn-Ni-Cu Alloy Anode for Lithium-Ion Batteries from Nickel Matte in Deep Eutectic Solvents. J. Electrochem. Soc. 2019, 166 (10), D427-D434.
93. Bernasconi, R.; Panzeri, G.; Firtin, G.; Kahyaoglu, B.; Nobili, L.; Magagnin, L., Electrodeposition of ZnNi Alloys from Choline Chloride/Ethylene Glycol Deep Eutectic Solvent and Pure Ethylene Glycol for Corrosion Protection. J. Phys. Chem. B 2020, 124 (47), 10739-10751.
94. Sides, W.; Kassouf, N.; Huang, Q., Electrodeposition of Ferromagnetic FeCo and FeCoMn Alloy from Choline Chloride Based Deep Eutectic Solvent. J. Electrochem. Soc. 2019, 166 (4), D77-D85.
95. Duca, M.; Koper, M. T. M., Powering denitrification: the perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 2012, 5 (12), 9726-9742.
96. Reyter, D.; Chamoulaud, G.; Belanger, D.; Roue, L., Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling. J. Electroanal. Chem. 2006, 596 (1), 13-24.
97. Perez-Gallent, E.; Figueiredo, M. C.; Katsounaros, I.; Koper, M. T. M., Electrocatalytic reduction of Nitrate on Copper single crystals in acidic and alkaline solutions. Electrochim. Acta 2017, 227, 77-84.
98. Reyter, D.; Bélanger, D.; Roué, L., Study of the electroreduction of nitrate on copper in alkaline solution. Electrochim. Acta 2008, 53 (20), 5977-5984.
99. Mattarozzi, L.; Cattarin, S.; Comisso, N.; Guerriero, P.; Musiani, M.; Vazquez-Gomez, L.; Verlato, E., Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes. Electrochim. Acta 2013, 89, 488-496.
100. Wang, Y. H.; Xu, A.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S.; Ding, Y.; Wu, J. W.; Lum, Y. W.; Dinh, C. T.; Sinton, D.; Zheng, G. F.; Sargent, E. H., Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption. J. Am. Chem. Soc. 2020, 142 (12), 5702-5708.
101. Durivault, L.; Brylev, O.; Reyter, D.; Sarrazin, M.; Belanger, D.; Roue, L., Cu-Ni materials prepared by mechanical milling: Their properties and electrocatalytic activity towards nitrate reduction in alkaline medium. J. Alloy. Compd. 2007, 432 (1-2), 323-332.
102. Simpson, B. K.; Johnson, D. C., Electrocatalysis of nitrate reduction at copper-nickel alloy electrodes in acidic media. Electroanalysis 2004, 16 (7), 532-538.
103. Li, D.; Huang, L. L.; Tian, Y.; Liu, T. T.; Zhen, L.; Feng, Y. J., Facile synthesis of porous Cu-Sn alloy electrode with prior selectivity of formate in a wide potential range for CO2 electrochemical reduction. Appl. Catal. B-Environ. 2021, 292, 11.
104. Awada, C.; Dab, C.; Grimaldi, M. G.; Alshoaibi, A.; Ruffino, F., High optical enhancement in Au/Ag alloys and porous Au using Surface-Enhanced Raman spectroscopy technique. Sci Rep 2021, 11 (1), 13.
105. Wu, L.; Yang, G.; Li, Z.; Xiao, Y. F.; Qian, J. W.; Zhang, Q. K.; Huang, J. J., Electrochemical performance of porous Ni-alloy electrodes for hydrogen evolution reaction from seawater electrolysis. RSC Adv. 2020, 10 (73), 44933-44945.
106. Abdel-Karim, R.; Reda, Y.; Zohdy, K. M.; Abdelfatah, A.; El-Raghy, S., Electrochemical Performance of Porous Ni-Cu Anodes for Direct Methanol Fuel Cells. Int. J. Electrochem. Sci. 2019, 14 (3), 3035-3054.
107. Li, Y. Y.; Kang, P.; Huang, H. Q.; Liu, Z. G.; Li, G.; Guo, Z.; Huang, X. J., Porous CuO nanobelts assembly film for nonenzymatic electrochemical determination of glucose with High fabrication repeatability and sensing stability. Sens. Actuator B-Chem. 2020, 307, 9.
108. Yeh, F. H.; Tai, C. C.; Huang, J. F.; Sun, I. W., Formation of porous silver by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid. J. Phys. Chem. B 2006, 110 (11), 5215-5222.
109. Erlebacher, J., An atomistic description of dealloying - Porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 2004, 151 (10), C614-C626.
110. Pugh, D. V.; Dursun, A.; Corcoran, S. G., Electrochemical and morphological characterization of Pt-Cu dealloying. J. Electrochem. Soc. 2005, 152 (11), B455-B459.
111. Zhang, C.; Sun, J. Z.; Xu, J. L.; Wang, X. G.; Ji, H.; Zhao, C. C.; Zhang, Z. H., Formation and microstructure of nanoporous silver by dealloying rapidly solidified Zn-Ag alloys. Electrochim. Acta 2012, 63, 302-311.
112. Zhang, Q.; Zhang, Z. H., On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution. Phys. Chem. Chem. Phys. 2010, 12 (7), 1453-1472.
113. Xu, J. L.; Wang, Y.; Zhang, Z., Potential and Concentration Dependent Electrochemical Dealloying of Al2Au in Sodium Chloride Solutions. J. Phys. Chem. C 2012, 116 (9), 5689-5699.
114. Chiu, H. Y.; Liu, Y. C.; Hsieh, Y. T.; Sun, I. W., Some Aspects on the One-Pot Fabrication of Nanoporous Pd-Au Surface Films by Electrochemical Alloying/Dealloying of (Pd-Au)-Zn from a Chlorozincate Ionic Liquid. ACS Omega 2017, 2 (8), 4911-4919.
115. Hsieh, L. Y.; Wang, P. K.; Chang, C. C.; Sun, I. W., Electrodeposition and Dissolution of Zn on PdAg Foil in a Chlorozincate Ionic Liquid to Fabricate Micro-Nanostructured PdAgZn Alloy Films for Electrocatalysis. J. Electrochem. Soc. 2017, 164 (12), D752-D757.
116. Lin, Y. W.; Tai, C. C.; Sun, I. W., Electrochemical preparation of porous copper surfaces in zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid. J. Electrochem. Soc. 2007, 154 (6), D316-D321.
117. Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications. Masson: 1982; p 808 pp.
118. Bolleter, W. T.; Bushman, C. J.; Tidwell, P. W., Spectrophotometric Determination of Ammonia as Indophenol. Analytical Chemistry 1961, 33 (4), 592-594.
119. Verdouw, H.; Vanechteld, C. J. A.; Dekkers, E. M. J., AMMONIA DETERMINATION BASED ON INDOPHENOL FORMATION WITH SODIUM SALICYLATE. Water Res. 1978, 12 (6), 399-402.
120. Abbott, A. P.; El Ttaib, K.; Ryder, K. S.; Smith, E. L., Electrodeposition of nickel using eutectic based ionic liquids. Trans. Inst. Metal Finish. 2008, 86 (4), 234-240.
121. Abbott, A. P.; Frisch, G.; Gurman, S. J.; Hillman, A. R.; Hartley, J.; Holyoak, F.; Ryder, K. S., Ionometallurgy: designer redox properties for metal processing. Chem. Commun. 2011, 47 (36), 10031-10033.
122. Zhang, Q. B.; Abbott, A. P.; Yang, C., Electrochemical fabrication of nanoporous copper films in choline chloride-urea deep eutectic solvent. Phys. Chem. Chem. Phys. 2015, 17 (22), 14702-14709.
123. Macdonald, D. D.; Ismail, K. M.; Sikora, E., Characterization of the passive state on zinc. J. Electrochem. Soc. 1998, 145 (9), 3141-3149.
124. Thomas, S.; Birbilis, N.; Venkatraman, M. S.; Cole, I. S., Corrosion of Zinc as a Function of pH. Corrosion 2012, 68 (1), 9.
125. Thomas, S.; Cole, I. S.; Sridhar, M.; Birbilis, N., Revisiting zinc passivation in alkaline solutions. Electrochim. Acta 2013, 97, 192-201.
126. Assaf, F. H.; Zaky, A. M.; El-Rehim, S. S. A., Cyclic voltammetric studies of the electrochemical behaviour of copper-silver alloys in NaOH solution. Appl. Surf. Sci. 2002, 187 (1-2), 18-27.
127. Giri, S. D.; Sarkar, A., Electrochemical Study of Bulk and Monolayer Copper in Alkaline Solution. J. Electrochem. Soc. 2016, 163 (3), H252-H259.
128. Vedharathinam, V.; Botte, G. G., Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)(2) catalyst in alkaline medium. Electrochim. Acta 2013, 108, 660-665.
129. Chen, Y. T.; Chen, P. Y.; Ju, S. P., Preparation of Ni nanotube-modified electrodes via galvanic displacement on sacrificial Zn templates: Solvent effects and attempts for non-enzymatic electrochemical detection of urea. Microchem J. 2020, 158, 10.
130. Oliva, P.; Leonardi, J.; Laurent, J. F.; Delmas, C.; Braconnier, J. J.; Figlarz, M.; Fievet, F.; Deguibert, A., REVIEW OF THE STRUCTURE AND THE ELECTROCHEMISTRY OF NICKEL HYDROXIDES AND OXY-HYDROXIDES. J. Power Sources 1982, 8 (2-3), 229-255.
131. Solmaz, R.; Doner, A.; Kardas, G., Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution. Int. J. Hydrog. Energy 2010, 35 (19), 10045-10049.
132. T. P. Dirkse, R. T., The Corrosion of Zinc in KOH Solutions. J. Electrochem. Soc. 1969, 116 (2), 4.
133. Mattarozzi, L.; Cattarin, S.; Comisso, N.; Gerbasi, R.; Guerriero, P.; Musiani, M.; Vazquez-Gomez, L.; Verlato, E., Electrodeposition of Compact and Porous Cu-Zn Alloy Electrodes and Their Use in the Cathodic Reduction of Nitrate. J. Electrochem. Soc. 2015, 162 (6), D236-D241.
134. Bouzek, K.; Paidar, M.; Sadilkova, A.; Bergmann, H., Electrochemical reduction of nitrate in weakly alkaline solutions. J. Appl. Electrochem. 2001, 31 (11), 1185-1193.
135. Mattarozzi, L.; Cattarin, S.; Comisso, N.; Gambirasi, A.; Guerriero, P.; Musiani, M.; Vazquez-Gomez, L.; Verlato, E., Hydrogen evolution assisted electrodeposition of porous Cu-Ni alloy electrodes and their use for nitrate reduction in alkali. Electrochim. Acta 2014, 140, 337-344.
136. Polatides, C.; Dortsiou, M.; Kyriacou, G., Electrochemical removal of nitrate ion from aqueous solution by pulsing potential electrolysis. Electrochim. Acta 2005, 50 (25-26), 5237-5241.
137. Reyter, D.; Belanger, D.; Roue, L., Elaboration of Cu-Pd Films by Coelectrodeposition: Application to Nitrate Electroreduction. J. Phys. Chem. C 2009, 113 (1), 290-297.
138. Wang, X. D.; Zhu, M. Q.; Zeng, G. S.; Liu, X.; Fang, C. H.; Li, C. H., A three-dimensional Cu nanobelt cathode for highly efficient electrocatalytic nitrate reduction. Nanoscale 2020, 12 (17), 9385-9391.
139. Kandemir, T.; Schuster, M. E.; Senyshyn, A.; Behrens, M.; Schlogl, R., The Haber-Bosch Process Revisited: On the Real Structure and Stability of "Ammonia Iron" under Working Conditions. Angew. Chem.-Int. Edit. 2013, 52 (48), 12723-12726.
140. Ngo, T. T.; Phan, A. P. H.; Yam, C. F.; Lenhoff, H. M., Interference in determination of ammonia with the hypochlorite-alkaline phenol method of Berthelot. Analytical Chemistry 1982, 54 (1), 46-49.
141. Suryanto, B. H. R.; Du, H.-L.; Wang, D.; Chen, J.; Simonov, A. N.; MacFarlane, D. R., Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nature Catalysis 2019, 2 (4), 290-296.
142. Solmaz, R.; Kardas, G., Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. Electrochim. Acta 2009, 54 (14), 3726-3734.
143. Gonzalez-Buch, C.; Herraiz-Cardona, I.; Ortega, E.; Garcia-Anton, J.; Perez-Herranz, V., Synthesis and characterization of macroporous Ni, Co and Ni-Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media. Int. J. Hydrog. Energy 2013, 38 (25), 10157-10169.
144. Lotfi, N.; Farahani, T. S.; Yaghoubinezhad, Y.; Darband, G. B., Evaluation of the electrocatalytic activity and stability of graphene oxide nanosheets coated by Co/Ni elements toward hydrogen evolution reaction. Mater. Res. Express 2019, 6 (8), 13.
145. Javan, H.; Asghari, E.; Ashassi-Sorkhabi, H.; Moradi-Haghighi, M., A low-cost platinum-free electrocatalyst based on carbon quantum dots decorated Ni-Cu hierarchical nanocomposites for hydrogen evolution reaction. Int. J. Hydrog. Energy 2020, 45 (38), 19324-19334.
146. Lotfi, N.; Shahrabi, T.; Yaghoubinezhad, Y.; Darband, G. B., Electrodeposition of cedar leaf-like graphene Oxide@Ni-Cu@Ni foam electrode as a highly efficient and ultra-stable catalyst for hydrogen evolution reaction. Electrochim. Acta 2019, 326, 12.
147. Li, Z. X.; Yu, C. C.; Wen, Y. Y.; Gao, Y.; Xing, X. F.; Wei, Z. T.; Sun, H.; Zhang, Y. W.; Song, W. Y., Mesoporous Hollow Cu-Ni Alloy Nanocage from Core-Shell Cu@Ni Nanocube for Efficient Hydrogen Evolution Reaction. Acs Catalysis 2019, 9 (6), 5084-5095.
148. Anicai, L.; Petica, A.; Costovici, S.; Prioteasa, P.; Visan, T., Electrodeposition of Sn and NiSn alloys coatings using choline chloride based ionic liquids-Evaluation of corrosion behavior. Electrochim. Acta 2013, 114, 868-877.