| 研究生: |
張詩芸 Chang, Shin-Yun |
|---|---|
| 論文名稱: |
以有機金屬化學氣相沉積法(MOCVD)配合流體床技術製備奈米碳化鉻-碳熱還原過程之相轉變機制 Investigation of nanosize chromium carbide prepared by MOCVD in Fluidized Bed -carbothermal reduction process and phase evolution mechanisms |
| 指導教授: |
黃肇瑞
hung, jow-lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 奈米複合陶瓷 、介穩定碳化鉻 、碳化熱處理 、流體床 、有機金屬化學氣相沈積法 |
| 外文關鍵詞: | Nanocomposites, MOCVD, metastable chromium carbide, carbothermal |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用有機金屬化學氣相沈積法(MOCVD)配合流體床(Fluidized Bed)技術,製備Cr2O3/Al2O3奈米複合粉體,並經由甲烷-氫氣氣氛下碳化熱處理將Cr2O3碳化為Cr3C2,研究其碳化熱處理過程之相轉換機制,期望能夠找出最佳的碳化溫度和時間,製備出Cr3C2//Al2O3複合粉末在真空環境中以1400℃進行熱壓燒結,製備出緻密性之碳化鉻/氧化鋁奈米複合陶瓷。
本實驗將先導物Cr(CO)6 經由流體床熱烈解後,將裂解的奈米粉末經由XRD、TEM、XPS和Raman等做為分析。實驗結果發現隨著碳化熱處理的溫度時間改變,碳化過成中碳首先沉積在奈米粉末的表面進行氧化還原的反應,之後碳會包覆在奈米粉末外層經由擴散的方式進行反應,由XRD相分析可得知裂解的奈米粉末Cr(CO)6由非晶質的C-C、CrC、C-O的化合物依序轉變Cr2O3→Cr3C2-x→Cr3C2。利用TEM觀察得知奈米粉末的表面形貌和碳擴散層,由STEM line scan mode 發現其組成物的表面梯度:分別為非晶質的碳、Cr3C2-x 以及 Cr3C2。EELS證明Cr3C2-x 以及 Cr3C2 計量比和鍵結價數上的差別最後由XPS、Raman證明碳的增加以及結構上的改變。
於真空熱壓燒結合成之Cr3C2/Al2O3奈米複合陶瓷的強度、硬度、韌性均較單質氧化鋁提升許多,顯示大部分第二相的奈米碳化鉻產生了強、韌化的效果。
Nanochromium carbide were prepared by metal-organic chemical vapor deposition (MOCVD) method in a fluidized bed and carburized in the mixtures of CH4/H2 atmosphere in temperature ranged from 700-850 oC. Under these conditions, the carburization process involved carbon deposition on the outer surface of the powder, diffusion of carbon into nanopowder as well as carbide formation, Cr2O3, metastable Cr3C2-x and stable Cr3C2.
The relation among the products, reduction temperature and time was summarized from the XRD. TEM is employed to investigate the detailed structure of the carbon diffusion layer. Use the STEM line scan mode to find out the compositional gradient within the interlayer: Cr3C2-x 、 Cr3C2 and pure C amorphous. The experimental results indicated that, carbonthermal reduction process of Cr2O3 consists of two steps, the rate-controlling step is CO /CO2 gas diffusion through the layer of reduction products. With the longer duration time, the stoichiometry of the mixture Cr3C2-x is the first carbide form, then to form stable Cr3C2.。
The hot-pressed Cr3C2/Al2O3 nanocomposites have better mechanical performances such as bending strength, and hardness than the monolithic Al2O3. The nano-sized Cr3C2 particles were mainly located within the Al2O3 grains as well as on the Al2O3 grain boundaries.
[1] Y.Wang and S.M.Hsu,”The effects of operating parameters and
environment on the wear and wear transition of alumina, ” Wear, 195, 90
(1996).
[2] B.B. Ghate, W.C. Smith, C.H. Kim, D.P.H. Hasselman, and G.E. Kane, “Effect of Chromia alloying on machining performance of alumina ceramic cutting tools,”. Ceramic Bulletin, 54 (2), 210 (1975).
[3] S.Lio., M. Watanabe, ”Mechanical properties of alumina/ silicon carbide whisker composites,”. J. Am. Ceram. Soc., 72 (10), 1880 (1989).
[4] Y.S. Chou, D.J. Green, “Silicon carbide platelet / alumina composites effect of forming technique on platelet orientation,”.J. Am. Ceram. Soc., 75 (12), 3346 (1992).
[5] J. L. Huang, Ho-Don Lin, Ching-An Jeng, “Crack growth resistance of Cr3C2/Al2O3 composites,”. Mater. Sci. Eng., A279, 81 (2000).
[6] J. L. Huang, K.C. Twu, D.F. Lii, ”Investigation of Al2O3/Cr3C2 composites prepared by pressureless sintering (part2),” Mater. Chem. Phys., 51, 211 (1997).
[7] D.F. Lii, J.L. Huang, J. H Huang , “The interfacial reaction in Cr3C2/Al2O3 composites,”. J. Mater. Res., 14, 817 (1999).
[8] C.T. Fu, J.M. Wu, and A.K. Li,” Microstructure and mechanical properties of Cr3C2 particulate reinforced Al2O3 matrix composites,”. J. Mater. Sci., 29, 2671 (1994).
[9] C.T. Fu, A.K. Li, & J.M. Wu, ” Effects of postsintering hot isostatic pressing processed on microstructures and mechanical properties of Al2O3-Cr3C2 composite,”. Bri. Ceram. Trans., 93 (5), 178 (1994).
[10] MSternitzke,“Review:structural ceramic nanocomposites,”. J. Eur. Ceram. Soc., 17, 1061 (1997).
97
[11] C.C. Anya,“Microstructures nature of strengthening and toughening in Al2O3-SiC(p) nanocomposites,”. J. Mat. Sci., 34, 5557 (1999).
[12] K.Niihara, ” New design concept of structural ceramics-ceramic nanocomposites,”. J. Ceram. Soc. Jpn., 99 [10], 974 (1991).
[13] C. T. Fu, A. K. Li, and J. M. Wu, “Effects of Oxidation of Cr3C2 Particulate Reinforced Al2O3 Matrix Composites on Microstructure and Mechanical Structure Properties,” J. Mater. Sci., 28 [23-24] , p.6285 (1993)
[14] K. M. Shu, C. T. Fu, and J. M. Liu, “Electrodischarge-Machining of Al2O3/Cr3C2 Composites,”. J. Mater. Sci. Letter, 13[13-18],p.1146 (1994)
[15] C. T. Fu, A. K. Li, and J. M. Wu, “Effects of Post-Sinter Hot Isostatic Pressing Processes on Microstructure and Mechanical Properties of Al2O3-Cr3C2 Composites,”. Bri. Ceram. Trans., 93 [5], p.178 (1994)
[16 ] 涂國基,常壓燒結Al2O3/Cr3C2複合材料機械性質和微結構之探討, 國立成功大學材料科學及工程學系碩士論文(1994)
[17] 黃俊傑,Cr3C2/Al2O3射出成型技術之開發及性質研究,國立成功大學材料科學及工程學系碩士論文(1995)
[18] G.Y. Onada, Jr, and L.L.Hench, ”Ceramic processing before firing”. Wiley, New York, 1978, pp. 357-376.
[19] S. Morooka, A. Kobata and K. Kusakabe,”Rate analysis of composite ceramic particles production by CVD reactions in a fluidized bed,”. AICHE Symp., Ser. 87 (1991) 32-37.
[20] K. Tsugeki, T. Kato, Y. Koyanagi, K. Kusakabe, and S.Morooka, “Electconductivity of sintered bodies of α-Al2O3-TiN composite prepared by CVD reaction in a fluidized bed,”. J. Mater. Sci., 28, 3168 (1993).
98
[21] B.J. Wood, A. Sanjurjo, G.T. Tong, and S.E. Swider,” Coating particles by chemical vapor deposition in fluidized bed reactors,”. Sur. Coat. Tech., 49, 228 (1991).
[22] B. Hua, and C. Li,” Production and characterization of nanocrystalline SnO2 films on Al2O3 agglomerates by CVD in a fluidized bed,”. Mat. Chem. Phy., 59 ,130 (1999).
[23] K.Niihara,“New Design Concept of Structural Ceramics-Ceramic Nanocomposite,” .J. Ceram. Soc. Jpn., 99 [10], p.974 (1991)
[24] T. Ohji, Y.K. Jeong, “Particle/matrix interface and its role in creep inhibition in alumina/silicon carbide nanocomposites,”. J. Am. Ceram. Soc., 79, 33 (1996)
[25] C. Zener, “Grains, Phases, and Interfaces: An Interpretation of Microstructure,” Trans. Am. Inst. Min. Metall. Eng., 175, p.15 (1948)
[26] N. J. Petch, “Cleavage Strength of Polycrystals,” J. Iron and Steel Inst.(London), 174 [1] , p.25 (1953)
[27] R. W. Rice, “Toughening in Ceramics Particulate and Whisker Composites, ” Ceram. Eng. Sci. Proc., 11 [7-8], p.667 (1990)
[28] K.T. Faber and A.G.. Evans,”Crack deflection process-I. theory,”. Acta Metall., 31, 565 (1983).
[29] A. Lerch and A.Rousset, Thermochim. Acta. 232, 233(1994)
[30] S.Loubiere,Ch.Laurent,J.P.Bonino,”Eaboration,microstructure and reactivity of Cr3C2 powders of different morphology,” Res. Bull. 30, 1535(1995)
[31] S.Loubiere,Ch.Laurent, J.P. Bonino, and A.,”A metastable chromium carbide powder obtained by carburization of a metastable chromium oxide,”J.Alloys.Compd. 243,59(1996) 99
[32] E. Bouzy, E. Bauer-Grosse, and G. Le Caer,”NaCl and filled Re3B-type structures for two metastable chromium carbides,” Philos. Mag., B. 68 (5), 619 (1993)
[33] Llun B Ncn A. J. G.lnvrnr* AuN J. Cnc'YEI':”Use of electron-energylo near-edge fine structure in the study of minerals, American Mineralogist,”Vol.79, p. 411-425,( 1994)
[34] X. Fana and E. C. Dickeyb,” Z-contrast imaging and electron energy-loss spectroscopy analysis of chromium-doped diamond-like carbon films,” APPL.PHYSICS LETTERS, Vol .75, No. 18
[35]林慶章,”利用MOCVD及燒結製程製備奈米鉬/氧化鋁複合材料及其微結構發展,”國立台灣大學材料科學及工程學系博士論文(2000)
[36] H. Itoh, K. Hattori, and S. Naka,“Rotary Powder Bed Chemical Vapor Deposition of Titanium Nitride on Spherical Iron Powder,” J. Mater. Sci., 24, p.3643 (1989)
[37] W. Hieber and E. Romberg, Z. Anorg. Allg, Chem., 221,p.332 (1935)
[38] M.H. Lo and W.C. J. Wei,”Analysis of (Cr, Mo) oxycarbide films grown on stainless steel via metalloorganic chemical vapor deposition,” J. Am. Ceram. Soc., 80, 886 (1997)
[39] C.J. Lin, C.C. Yang and W.C. J. Wei“Processing and microstructure of nano-Mo/Al2O3 composites from MOCVD and fluidized bed,” Nanostructure Materials, 11, 1361 (1999).
[40] Chin Lung Chen and W. J. Wei“Sintering Behavior and Mechanical Properties of nano-sized Cr3C2/Al2O3 Composites Prepared by MOCVI Process, ”. J. Euro. Ceram. Soc., 22, p.2883 (2002)
[41] W. Hieber and E. Romberg, Z. Anorg. Allg, Chem., 221,p.332 (1935)
[42] J. J. Lander, and L. H. Germer:“Plating Molybdenum ,Tungsten , and Chromium by Thermal Decomposition of Their Carbonyls,” Am.Inst. o Mini. and Metall. Enginer., p.2295(1947)
100
[43] M.H. Lo and W.C.J. Wei,”Analysis of (Cr,Mo) Oxycarbide Film Grown on Stainless Steel via Metallooragnic Chemical Vapor Deposition,”.J.Am.Ceram.Soc.,80[4] , p.886 (1997)
[44] W. F. Chu and A. Rahmel”The Conversion of Chromium Oxide to Chromium Carbide,”. Oxid. Met., 15, Nos. ¾ , 331 (1981).
[45] N. Anacleto and O. Ostrovski,” Solid-state reduction of chromium oxide by methane-containing gas,”Metall. Mater. Trans. B., 35B, 609 (2004).
[46] M. De., F. R.eniers, C.Buess.,“Synthesis and Characterisation of Chromium Carbides,” Appl. Sur. Science,120, p.85(1997)
[47] 羅名宏,”鉻、鉬羰化物的披覆製程與鍍層性質性質研究”,國立台灣大學材料科學及工程學系碩士論文(1996)
[48] 彭康泰,以有機金屬化學氣相沈積技術及燒結製程製備奈米級矽化鉬/氮化矽複合陶瓷之研究”,國立成功大學材料科學及工程學研究所 (2002)
[49] 林浩東,”氧化鋁-碳化鉻奈米複合材料的製備及其性質之研究”,國立成功大學材料科學及工程學研究所 (2006)
[50] C.D Wagner, W.M. Riggs, L.E. Davis, and J.F.,”Handbook of X-ray Photoelectron Spectroscopy ,” pp. 77.
[51] W. F. Chu and A. Rahmel,”The Conversion of Chromium Oxide to Chromium Carbide,” Oxid. Met., 15, Nos. ¾ , 331 (1981).
[52] O.Kubaschewski,E.LL.Evans,”Metallurgicalthermochemistry,”
(Pergamon London, 1979) pp.421
[53] 呂順清,以MOCVD及碳化處理至被碳化鉻/氧化鋁奈米複合料之研究,國立成功大學材料科學及工程學研究所 (2006)
[54] G. Pezzotti, W. H. Muller, “Strengthening Mechanisms in Al2O3/SiC Nanocomposites,” Computational Materials Science,22, p.155 (2001)
101
[55] Tomoyuki MORI, Jian YANG,”Mechanism of carbothermic reduction of Chromium Oxide,”ISIJ international,vol.47(2007),NO.10,pp.1387-1393
[56] G.M.Wilson,S.O.Saied,”Mechanical and physical properties of C and C-Cr sputter coatings measured at the nano-scale,” Thin Solid Films 515(2007)7820-7828
[57] A. Zalar_, J. Kovacˇ,” Ion sputtering rates of C, CrxCy, and Cr at different Ar+ ion incidence angles,”Vacuum 82 (2008) 116–120
[58] M. Detroye a, F. Reniers :” AES–XPS study of chromium carbides and chromium iron carbides” Appl.Surf. Science ,144–145(1999),78–82,
[59] Martine Mullet a, Fre’de’ric Demoisson,” Aqueous Cr(VI) reduction by pyrite: Speciation and characterisation of the solid phases by X-ray photoelectron, Raman and X-ray absorption sp2 ectroscopies,” Geo. Cosmo.Acta. 71 (2007) 3257–3271
[60] 劉思謙,”TEM理論實務”,P356-364
[61] W.G.Waddingaton,”white lines in the L2,3electron-energy-loss and x-ray absorption spectra of 3d transition mentals,”phys.revi.B, vol.34,number3
[62] Y.N. Kok , P.Eh. Hovsepian ,” Resistance of nanoscale multilayer C/Cr coatings,” Surf. & Coatings Tech.,201 (2006), 3596–3605
[63] J.G. Buijnsters , P. Shankar:” CVD diamond deposition on steel using arc-plated chromium nitride interlayers,”Diamond Relat. Mater., 11 (2002) ,536–544
[64] Harish C. Barshilia,a_ N. Selvakumar, “Structure and optical properties of pulsed sputter deposited CrxOy/Cr/Cr2O3 solar selective coatings,”JOURNAL OF APPLIED PHYSICS 103, 023507 _2008_
[65] Ching-Huei Wang,Shiow-Shyung Lin,”Study on Catalytic Incineration of Methane Using Cr2O3/γ-Al2O3 as the Catalyst,” J. Environmental Sci. Heal. Part A, 396, 1631 — 1641
[66] Toshiharu Yokoyama,”Hydrogenation of aliphatic carboxylic acids to
102
103
corresponding aldehydes over Cr2O3-based catalysts,”Appl.Cataly. A ,276 (2004) ,179–185
[67] Arla Kyto,1 Jean-Paul Jacobs.,” Surface Characteristics and Activity of Chromia/Alumina Catalysts Prepared by Atomic Layer Epitaxy,” J. cataly.,162, 190–197 (1996)
[68] O.F. Gorriz, L.E. CaduÂs,” Supported chromium oxide catalysts using metal carboxylate,” Applied Catalysis A: General 180 (1999) 247±260
complexes: dehydrogenation of propane
[69] G. , S. Fremiotti, E. Garrone,”diffusion reflectance spectroscopy study of the thermal genesis and molecular structure of chromium-supported catalysts,” Indovina, J. Catal. 148 (1994) 36.
[70] 王士文、”Cr2O3聚集狀態和助劑CeO2對Cr2O3/Al2O3催化劑性能的影響,"J. Cataly.,Vol.13 No.2
[71] F. Bondioli, A.M. Ferrari,”Reaction Mechanism in Aluminina/Chromia (Al2O3-Cr2O3) Solid Solution Obtained by Coprecipitation,” J. Am. Ceram. Soc., 83, 2036 (2000)