| 研究生: |
趙傳睿 Jhao, Chuan-Ruei |
|---|---|
| 論文名稱: |
以微棲地偏好度及適合度結合River2D 模擬枯水期魚類棲地 Using Microhabitat Preference/Suitability and River2D to Simulate Fish Habitat in Low Flow Condition |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | River2D 、低流量 、棲地偏好度 、棲地適合度 、臺灣特有種 |
| 外文關鍵詞: | River2D Simulation, Low Flow Condition, Habitat Preference, Habitat Suitable Index, Endemic Species |
| 相關次數: | 點閱:154 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在河川低流量時,魚類會採取不同棲息方式度過枯水季節,本研究探討魚類棲息地環境受到流量減少的影響,使用偏好度及適合度瞭解魚類在該環境的偏好,達到棲息地環境保護及保育的目的。研究中,針對明潭吻鰕虎、埔里中華爬岩鰍及短吻小鰾鮈三種臺灣特有種進行偏好度及適合度研究,在湍瀨與深潭不同的棲息地,分別以為電格法及背負式電魚法採樣,進行研究區域生物調查。為了能充分瞭解棲息地對魚類影響,研究中藉由斷面測量,透過模式模擬流量變化之下的物理棲息地,進而探討流量改變對於魚類棲息地的影響。採樣結果資料處理的部分,採用以等量及等距方式做偏好度和適合度比較,等量分組方式是將採樣點依等數量進行分組,而等距是以參數等間距來分組。水理演算是利用HEC-RAS 模擬各斷面在不同流量下的水位高,結合二維棲地模式River2D 進行二維棲地模擬,各網格內模擬結果涵蓋不同流量之下的水深與流速變化,輸入魚類偏好度或是適合度指數,可以得到魚類偏好棲地區域或是權重可利用面積。模擬結果顯示明潭吻鰕虎喜好相對高流速(40cm/s 以上)及淺水(20cm 以下)棲息地,埔里中華爬岩鰍喜好相對中流速( 50~70cm/s )及淺水( 20cm 以下)棲息地,短吻小鰾鮈則喜好相對低流速(20cm/s 以下)和深水(20cm 以上)棲息地。根據上述結果,瞭解到低流量對魚類影響之大,造成魚類在棲地分佈及丰度上的改變,近年來,因我們人類取水需求增加,興建水庫或是攔河堰等結構物幫助人類取水,導致下游流量減少,希望藉本研究能瞭解低流量對魚類的影響,提供生態環境保育相關訊息。
Hydrology affects stream fish communities in different ways. This thesis examined the influence of low flow on changes of fish habitat by applying habitat preference and suitability into River2D modeling. The study sites were in the Houjyue Stream which is a small tributary of the Zen-Wen Stream in southern Taiwan. Fish samplings, environment measurements, and topography surveys were conducted during dry season from Nov. 2010 to April 2011. We sampled fish with electric grid method in riffle areas and backpack electric fishing method in pool areas and totally recorded 18 species of fish. The three most abundant species, Rhinogobius candidianus, Sinogastromyzon puliensis and Microphysogobio brevisrostris, were target species for later analyses. Topographic grid layer of a segment of stream bed was generated from field survey data by River2D, then, various flow amounts were applied on grid layer to simulate flow velocity and water depth. The microhabitat preference and suitability of flow velocity, water depth, and substrate types were calculated for the three target species, and were fed into River2D for modeling their preferred and suitable habitat. We also compared two grouping methods for preference and suitability analyses, equal interval and equal amount. In general, both grouping methods provide similar results that R. candidianus prefers high velocity and shallow water habitats, S. puliensis prefers middle velocity and shallow water habitats, and M. brevisrostris prefers low flow and deep water habitats. The suitable area and preferred areas of these three species decrease with decreasing flow amount. The declining of habitable area is especially faster for riffle species such as R. candidianus and S. puliensis.
英文文獻
Allan, J. D. and Castillo, M. M., Stream Ecology: Structure and Function of Running Waters. New York: Springer, 2007.
Arlinghaus, R. and Wolter, C., Amplitude of ecological potential: chub Leuciscus cephalus spawning in an artificial lowland canal. Journal of Applied Ichthyology, 19(1), 52-54, 2003.
Arthington, A. H., Olden, J. D., Balcombe, S. R. and Thoms, M. C., Multi-scale environmental factors explain fish losses and refuge quality in drying waterholes of Cooper Creek, an Australian arid-zone river. Marine and Freshwater Research, 61, 842–856, 2010.
Astrid, K. and Brown, J. H., Highly structured fish communities in australian desert springs. Ecological Society of America, 74(6), 1847-1855, 1993.
Ayllo´n, D., Almodo´var, A., Nicola, G. G. and Elvira, B., Interactive effects of cover and hydraulics on brown trout habitat selection patterns. River Research and Applications, 25(8), 1051-1065, 2009.
Bain, M. B. and Finn, J. T., Streamflow regulation and fish community structure. Ecology, 69(2), 382-392, 1988.
Bovee, K. D. and Milhous, R. T., Hydraulic simulation in instream flow studies: theory and techniques. Instream Flow Information Paper 5,1-131, 1978.
Bovee, K. D. and Milhous, R. T., A guide to stream habitat analysis using the instream flow incremental methodology. Instream Flow Information Paper 12, 130, 1982.
Davey, A. J. H. and Kelly, D. J., Fish community responses to drying disturbances in an intermittent stream: a landscape perspective. Freshwater Biology, 52(9), 1719- 1733, 2007.
Davey, A. J. H., Kelly, D. J. and Biggs, B. J. F., Refuge-use strategies of stream fishes in response to extreme low flows. Journal of Fish Biology, 69(4), 1047-1059, 2006.
Durham, B. W. and Wilde, G. R., Influence of stream discharge on reproductive success of a prairie stream fish assemblage. Transactions of the American Fisheries Society, 135(6), 1644-1653, 2006.
Friedman, J. M., Osterkamp, W. R., Scott, M. L. and Auble, G. T., Downstream effects of dams on channel geometry and bottomland vegetation: regional patterns in the Great Plains. Wetlands, 18, 619-633, 1998.
Frissell, C. A., Liss, J. L., Warren, C. E. and Hurley, M. D., A hierarchical framework for stream habitat classification: viewing streams in a watershed context.
Environmental Management, 10(2), 199-214, 1986.
Gard and Mark, Variability in flow-habitat relationships as a function of transect number for PHABSIM modelling. River Research and Applications, 21(9), 1013-1019,2005.
Grossman, G. D., Sostoa, A., Freeman, M. C. and Lobon-Cervii, J., Microhabitat use in a mediterranean riverine fish assemblage Fishes of the lower Matarralia. Oecologia, 73, 490-500, 1987.
Hawkins, C. P., Kershner, I. L., Bisson, P. A., Bryant, M. D. and Decker, L. M., A hierarchical approach to classifying stream habitat features. fisheries 18(6), 3-12,1993.
Inoue, M. and Nakano, S., Fish abundance and habitat relationships in forest and grassland streams. Ecological Research, 16, 233-247, 2001.
Ivlev, V. S., Experimental Ecology of the Feeding of the Fishes. New Haven: Yale University Press, 1961.
Knighton, D., Fluvial forms and processes : a new perspective London: Edward Arnold,1998.
Kurt, D. F., Clifford, L. H. and Mit, G. P., Models That Predict Standing Crop of Stream Fish From Habitat Variables: 1950-85. Portland, : Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1988.
Lake, P. S., Ecological effects of perturbation by drought in flowing waters. Freshwater Biology, 48, 1161–1172, 2003.
Lechowicz, M. J., The sampling characteristics of electivity indices. Oecologia, 52, 22-30,1982.
Lobb, M. D. and Orth, D. J., Habitat use by an assemblage of fish in a large warmwater stream. Transactions of the American Fisheries Society, 120(1), 65-78, 1991.
Matthews, W. J. and Marsh, E. M., Effects of drought on fish across axes of space, time.
Freshwater Biology, 48, 1232–1253, 2003.
Poff, N. L. and Allan, D. J., Functional organization of stream fish assemblages in relation to hydrological variability. Ecology, 76, 606–627, 1995.
Poff, N. L. and Ward, J. V., Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1805–1817, 1989.
Poff, N. L., Allan, D. J., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E. and Stromberg, J. C., The natural flow regime. BioScience, 47(11), 769-784, 1997.
Raleigh, R. F., Habitat suitability index models: Brook trout. Washington, 1982.
Schlosser, I. J., Flow regime, juvenile abundance, and the assemblage structure of stream fishes. Ecology, 66(5), 1484-1490, 1985.
Shen, Y. and Diplas, P., Application of two- and three-dimensional computational fluid dynamics models to complex ecological stream flows. Journal of Hydrology, 348 (1-2), 195-214, 2008.
Shirvell, C. S., Ability of PHABSIM to predict chinook salmon spawning habitat.
Regulated Rivers: Reseach & Management, 3, 277-280, 1989.
Steffler, P. and Blackburn, J., River2D, Two-dimensional depth averaged model of river hydrodynamics and fish habitat. Introduction to depth averaged modeling and users manual. Edmonton, Alberta, Canada: University of Alberta, 2002.
Vehanen, T., Huusko, A., Yrjana, T., Lahti, M. and Maki-Petays, A. Habitat preference by grayling (Thymallus thymallus ) in an artificially modified, hydropeaking riverbed: a contribution to understand the effectiveness of habitat enhancement measures. Journal of Applied Ichthyology, 19, 15-20, 2003.
Waddle, T. J. (Ed.). PHABSIM for Windows User's Manual and Exercises. 2001.
Wishart, M. J., Water scarcity: politics, populations and the ecology of desert rivers. South Africa, 2006
Zweimuller, I., Microhabitat use by two small benthic stream fish in a 2nd order stream.
Hydrobiologia, 333, 125-137, 1995.
中文文獻
方力行和陳義雄,臺灣淡水及河口魚類誌,屏東:國立海洋生物博物館籌備處,1999。
方力行 ,臺灣高山溪流魚類的生態特性,溪流環境協會,7(2),2005。
毛振泰,臺灣河川生態定量評定與改善方式之研究,國立中央大學土木工程研究所,碩士論文,2007。
吳旻燕,許蓓怡和張世倉。清水溪臺灣特有種明潭吻鰕虎(Rhinogobius candidianus)攝食生態。臺灣生物多樣性研究,12(4),367-380,2010。
呂映昇、孫建平,魚類棲地多樣性與空間層級系統之關係探討及其於溪流復育之應用,臺灣生物多樣性研究,12(1): 43-60,2010。
呂映昇,物理環境因子與魚類棲地喜好度之關係-多變量分析之應用,國立成功大學水利及海洋工程研究所,碩士論文,2009。
李德旺和於錫亮,埔里中華爬岩鰍棲地環境之需求,特有生物研究,7(2),13-22,2005。
汪靜明,大甲溪水資源環境教育,臺北: 經濟部水利署臺北辦公區,2000。
林民生,乾旱──何日甘霖?科學月刊雜誌,1988。
林春吉,臺灣淡水魚蝦生態大圖鑑,臺北市:天下文化,2007。
莊明德,周文傑,張世倉,葉明峰,李德旺和林桂賢,適合度曲線研究(2/3)正式報告,2010。
經濟部,修正「南化水庫運用要點」部分規定、「南化水庫水門操作規定」第二點、第六點、第八點,部分規定,C.F.R.,2010。
蘇瑋哲,魚類個體生態矩陣於溪流棲地模擬之應用,國立成功大學水利及海洋工程研究所,碩士論文,2008。