簡易檢索 / 詳目顯示

研究生: 洪志昇
Hung, Chih-Sheng
論文名稱: 碘摻雜TPD、Alq3、CuPC及五環素有機薄膜特性之研究
Preparation and Characterization of Iodine Doped TPD, Alq3, CuPC and Pentacene Organic Thin Films
指導教授: 方炎坤
Fang, Yean-Kuen
蔡宗祐
Tsai, Tzong-Yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 95
中文關鍵詞: 五環素CuPCTPDAlq3碘摻雜有機薄膜
外文關鍵詞: CuPC, Iodine Doped, Pentacene, Organic Thin Films, TPD, Alq3
相關次數: 點閱:83下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文係探討碘摻雜之後有機薄膜的電容–電壓及電流–電壓特性變化。實驗結果中吾人發現,碘的摻雜使利用有機材料為介電質的有機類金氧半(MOS-like)二極體之電容–電壓曲線,相較於未摻雜者,TPD、Alq3及五環素往正閘極電壓軸方向產生偏移,但CuPC則往負閘極電壓軸方向偏移。此結果顯示出碘的摻雜可以在有機薄膜中產生陷阱電荷,且其極性會因有機材料之不同而異。
      此外吾人亦發現碘的摻雜會明顯改善利用TPD、Alq3及五環素所製作之MSM二極體的電流–電壓特性,但利用CuPC製作的有機MSM二極體則無此發現。吾人認為此改善與摻雜後產生的陷阱電荷有關,並於本論文中提出了一個模式來解釋其改善機制。

     In this thesis, we investigated the variation of C–V (capacitance-voltage) and I–V (current-voltage) characteristics of iodine doped organic thin films. Experimental results show that the C–V curves of the iodine doped organic MOS-like diodes made of TPD, Alq3 and Pentacene shift along the positive axis of the gate voltage as compared with non-doping one, but the C–V characteristics of CuPC are opposite. These results indicate that some quantity of trap states is existed in the organic dielectric layer after doping iodine. Also the electric characteristics of the generated trap states are different for various organic materials.
     We also discover that the I–V curves of the iodine doped organic MSM diodes made of TPD, Alq3 and Pentacene have better performance than the MSM diode of non-doping. We suspect it is related to the trap states brought by doping iodine. A comprehensive model has been proposed to explain the improvement mechanism.

    中文摘要………………………………………………………………..Ⅰ 英文摘要………………………………………………………………..Ⅱ 目錄……………………………………………………………………..Ⅲ 附表與附圖目錄………………………………………………………..Ⅴ 第一章、 前言…………………………………………………………..01 第二章、 OLED原理及碘摻雜理論…………………………………..04 2-1 OLED元件結構…………………………………………………04 2-2 OLED發光理論及工作原理……………………………………06 2-2-1 有機薄膜之電流密度………………………………………06 2-2-2 OLED元件的界面模型討論…………………..…………..07 2-3 碘摻雜OLED之特性及理論…………………………………...09 2-3-1 碘摻雜OLED之電流-電壓(I-V)及亮度-電壓(L-V)特性...09 2-3-2 碘摻雜OLED的載子躍遷模型…………………………...10 2-3-3 碘摻雜有機MOS-like元件之研究動機…………………..11 第三章、 有機MOS-like元件之成長系統與製備流程………………12 3-1 成長系統…………………………………………………………12 3-1-1 真空蒸著系統(Thermal Vacuum Evaporation System)…12 3-1-2 射頻磁控濺鍍系統(Radio-Frequency Sputtering System)………………….13 3-1-3 退火系統(Annealing System)……………………………...15 3-2 有機MOS-like元件製備流程………………………………….15 3-2-1 基板清洗……………………………………………………15 3-2-2 有機薄膜沉積………………………………………………16 第四章、 實驗結果與討論……………………………………………..18 4-1 碘摻雜TPD有機薄膜之特性分析…………………………….21 4-1-1 碘摻雜TPD有機MOS-like二極體之電容–電壓特性…21 4-1-2 碘摻雜TPD有機MSM二極體之電流–電壓特性……...23 4-2 碘摻雜Alq3有機薄膜之特性分析……………………………...24 4-2-1 碘摻雜Alq3有機MOS-like二極體之電容–電壓特性….24 4-2-2 碘摻雜Alq3有機MSM二極體之電流–電壓特性………25 4-3 碘摻雜Pentacene有機薄膜之特性分析………………………..26 4-3-1 碘摻雜Pentacene有機MOS-like二極體之電容–電壓特性………26 4-3-2 碘摻雜Pentacene有機MSM二極體之電流–電壓特性………28 4-4 碘摻雜CuPC有機薄膜之特性分析……………………………..29 4-4-1 碘摻雜CuPC有機MOS-like二極體之電容–電壓特………………29 4-4-2 碘摻雜CuPC有機MSM二極體之電流–電壓特性……..30 4-5 碘摻雜有機薄膜之SEM、AFM及PL特性分析……………...31 4-5-1 碘摻雜Pentacene、CuPC 之SEM、AFM分析………...31 4-5-2 碘摻雜Alq3、TPD 之PL特性分析………………………32 第五章、 結論與建議…………………………………………………..33 參考文獻………………………………………………………………..36

    [1] The Nobel Prize in Chemistry 2000 – Information for the Public
    (http://www.nobel.se/chemistry/laureates/2000/public.html)
    [2] Jiyoul Lee, D. K. Hwang, C.H. Park, S. S. Kim, and Seongil Im, “Pentacene-based photodiode with Schottky junction”, Thin Solid Films, vol.451-452, pp.12-15 (2004)
    [3] Samarendra P. Singh and Y. N. Mohapatra, M. Qureshi and S. Sundar Manoharan, “White organic light-emitting diodes based on spectral broadening in electroluminescence due to formation of interfacial exciplexes”, Appl. Phys. Lett., vol.86, 113505, pp.1-3 (2005)
    [4] C. W. Tang, and S. A. VanSlyke, “Organic electroluminescence diodes”, Appl. Phys. Lett., vol.51, pp.913-915 (1987)
    [5] Daishun Zheng, Zhaoyang Gao, Xiyuan He, Fujia Zhang, and Liming Liu, “Surface and interface analysis for copper phthalocyanine (CuPC) and indium-tin-oxide (ITO) using X-ray photoelectron spectroscopy (XES)”, Applied Surface Science, vol.211, pp.24-30 (2003)
    [6] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, “EL properties of organic light-emitting diodes using TPD derivates with diphenylstylyl groups as hole transport layer”, Thin Solid Films, vol.363, pp.33-36 (2000).
    [7] C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee, and S. T. Lee, ”Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer”, Appl. Phys. Lett., vol.83, pp.1038-1040 (2003)
    [8] Z. Bao, A. Dodabalapur, and A. J. Lovinger, ”Soluble and processable regioregular poly (3-hexylthiophene) for thin film field-effect transistor applications with high mobility”, Appl. Phys. Lett., vol.69, pp.4108-4110 (1996)
    [9] Yanbo Jin, Zhenlin Rang, Marshall I. Nathan, P. Paul Ruden, Christopher R. Newman, and C. Daniel Frisbie, “Pentacene organic field-effect transistor on metal substrate with spin-coated smoothing layer”, Appl. Phys. Lett., vol.85, pp.4406-4408 (2004)
    [10] J. Bastien, A. Assadi, S. Söderholm, J. Hellberg, and M. Moge, “Fabrication and characterization of Schottky barrier diodes with tetracyanoquinodimethane doped with bis(β-naphthyl)-tetrathiafulvalene”, Synthetic Metals, vol.82, pp.97-101 (1996)
    [11] Y. Matsuo, S. Sasaki, and S. Ikehata, “Electric properties on iodine doped pentacene”, Synthetic Metals, vol.121, pp.1383-1384 (2001)
    [12] S. M. Sze, “Semiconductor Devices Physics and Technology”, JOHN WILLY & SONS, 2nd Edition (2002)
    [13] A. B. Walker, A. Kambili, S. J. Martin, and “Electrical transport modeling in organic electroluminescence devices”, J. Phys. Condens. Matter, vol14, 9825 (2002)
    [14] Eiji Shikoh, Yasuo Ando, and Terunobu Miyazaki, ”Time resolved luminescence properties of Alq3 for spin-injection into organic semiconductor”, Journal of Magnetism and Magnetic Materials, vol.272-276, pp.1921-1923 (2004)
    [15] T. Wakimoto, S. Kawani, K. Nagayama, et al., Tech. Dig. Int. Symp. Inorganic and Organic Electroluminescence, Hamamatsu. 77 (1994)
    [16] M. Brinkmann, V. S. Videva, A. Bieber, J. J. Andre, P. Turek,
    L. Zuppiroli, P. Bugnon, M. Schaer, F. Nuesch, and
    R. Humphry-Baker, “Electronic and structural Evidences for Charge Transfer and Localization in Iodine-Doped Pentacene”, J. Phys. Chem., vol.108, pp.8170-8179 (2004)
    [17] Y. S. Lee, J. H. Park, and J. S. Choi, “Electrical characteristics of pentacene-based Schottky diodes”, Optical Materials, vol.21, pp.433-437 (2002)
    [18] Jian Zhang, Jun Wang, Haibo Wang, and Donghang Yan, “Organic thin-film transistor in sandwich configuration”, Appl. Phys. Lett., vol.84, pp.142-144 (2004)
    [19] J. H. Schön, Ch. Kloc, and B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors”, Organic Electronics, vol.1, pp.57-64 (2000)
    [20] 呂伯彥, ”有機光電半導體材料之應用”, 中文半導體技術雜誌, pp.79-88, 2001/3月號
    [21] A. J. Campbell, D. D. C. Bradley, E. Werner, and W. Brütting, “Transient capacitance measurements of the transport and trap states distributions in a conjugated polymer”, Organic Electronics, vol.1, pp.21-26 (2000)
    [22] Cabir Temirci, and Muzaffer Cakar, “The current-voltage and capacitance-voltage characteristics of Cu/rhodamine 101/p-Si contacts”, Physica B, vol.348, pp.454-458 (2004)
    [23] M. Cakar, Y. Onganer, and A. Türüt, “The nonpolymeric organic compound (pyronine-B)/p-type silicon/Sn contact barrier devices”, Synthetic Metals, vol.126, pp.213-218 (2002)
    [24] M. Cakar, and A. Türüt, “The conductance and capacitance-frequency characteristics of the organic compound (pyronine-B)/p-Si structures”, Synthetic Metals, vol.138, pp.549-554 (2003)
    [25] Takashi Hori, “Gate Dielectrics and MOS ULSIs”, Springer
    [26] Christos D. Dimitrakopoulos, and Patrick R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics”, Advanced Materials, vol.14, No.2, pp.99-117 (2002)
    [27] F. Ebisawa, T. Kurokawa, and S. Nara, ”Electrical properties of polyacetylene/polysiloxane interface”, J. Appl. Phys. vol.54, pp.3225-3259 (1983)
    [28] I. H. Campbell, D. L. Smith, and J. P. Ferraris, “Electrical impedance measurements of polymer light-emitting diodes”, Appl. Phys. Lett. vol.66, pp.3030-3032 (1995)

    下載圖示 校內:2006-07-11公開
    校外:2006-07-11公開
    QR CODE