| 研究生: |
洪志昇 Hung, Chih-Sheng |
|---|---|
| 論文名稱: |
碘摻雜TPD、Alq3、CuPC及五環素有機薄膜特性之研究 Preparation and Characterization of Iodine Doped TPD, Alq3, CuPC and Pentacene Organic Thin Films |
| 指導教授: |
方炎坤
Fang, Yean-Kuen 蔡宗祐 Tsai, Tzong-Yow |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 五環素 、CuPC 、TPD 、Alq3 、碘摻雜 、有機薄膜 |
| 外文關鍵詞: | CuPC, Iodine Doped, Pentacene, Organic Thin Films, TPD, Alq3 |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係探討碘摻雜之後有機薄膜的電容–電壓及電流–電壓特性變化。實驗結果中吾人發現,碘的摻雜使利用有機材料為介電質的有機類金氧半(MOS-like)二極體之電容–電壓曲線,相較於未摻雜者,TPD、Alq3及五環素往正閘極電壓軸方向產生偏移,但CuPC則往負閘極電壓軸方向偏移。此結果顯示出碘的摻雜可以在有機薄膜中產生陷阱電荷,且其極性會因有機材料之不同而異。
此外吾人亦發現碘的摻雜會明顯改善利用TPD、Alq3及五環素所製作之MSM二極體的電流–電壓特性,但利用CuPC製作的有機MSM二極體則無此發現。吾人認為此改善與摻雜後產生的陷阱電荷有關,並於本論文中提出了一個模式來解釋其改善機制。
In this thesis, we investigated the variation of C–V (capacitance-voltage) and I–V (current-voltage) characteristics of iodine doped organic thin films. Experimental results show that the C–V curves of the iodine doped organic MOS-like diodes made of TPD, Alq3 and Pentacene shift along the positive axis of the gate voltage as compared with non-doping one, but the C–V characteristics of CuPC are opposite. These results indicate that some quantity of trap states is existed in the organic dielectric layer after doping iodine. Also the electric characteristics of the generated trap states are different for various organic materials.
We also discover that the I–V curves of the iodine doped organic MSM diodes made of TPD, Alq3 and Pentacene have better performance than the MSM diode of non-doping. We suspect it is related to the trap states brought by doping iodine. A comprehensive model has been proposed to explain the improvement mechanism.
[1] The Nobel Prize in Chemistry 2000 – Information for the Public
(http://www.nobel.se/chemistry/laureates/2000/public.html)
[2] Jiyoul Lee, D. K. Hwang, C.H. Park, S. S. Kim, and Seongil Im, “Pentacene-based photodiode with Schottky junction”, Thin Solid Films, vol.451-452, pp.12-15 (2004)
[3] Samarendra P. Singh and Y. N. Mohapatra, M. Qureshi and S. Sundar Manoharan, “White organic light-emitting diodes based on spectral broadening in electroluminescence due to formation of interfacial exciplexes”, Appl. Phys. Lett., vol.86, 113505, pp.1-3 (2005)
[4] C. W. Tang, and S. A. VanSlyke, “Organic electroluminescence diodes”, Appl. Phys. Lett., vol.51, pp.913-915 (1987)
[5] Daishun Zheng, Zhaoyang Gao, Xiyuan He, Fujia Zhang, and Liming Liu, “Surface and interface analysis for copper phthalocyanine (CuPC) and indium-tin-oxide (ITO) using X-ray photoelectron spectroscopy (XES)”, Applied Surface Science, vol.211, pp.24-30 (2003)
[6] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, “EL properties of organic light-emitting diodes using TPD derivates with diphenylstylyl groups as hole transport layer”, Thin Solid Films, vol.363, pp.33-36 (2000).
[7] C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee, and S. T. Lee, ”Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer”, Appl. Phys. Lett., vol.83, pp.1038-1040 (2003)
[8] Z. Bao, A. Dodabalapur, and A. J. Lovinger, ”Soluble and processable regioregular poly (3-hexylthiophene) for thin film field-effect transistor applications with high mobility”, Appl. Phys. Lett., vol.69, pp.4108-4110 (1996)
[9] Yanbo Jin, Zhenlin Rang, Marshall I. Nathan, P. Paul Ruden, Christopher R. Newman, and C. Daniel Frisbie, “Pentacene organic field-effect transistor on metal substrate with spin-coated smoothing layer”, Appl. Phys. Lett., vol.85, pp.4406-4408 (2004)
[10] J. Bastien, A. Assadi, S. Söderholm, J. Hellberg, and M. Moge, “Fabrication and characterization of Schottky barrier diodes with tetracyanoquinodimethane doped with bis(β-naphthyl)-tetrathiafulvalene”, Synthetic Metals, vol.82, pp.97-101 (1996)
[11] Y. Matsuo, S. Sasaki, and S. Ikehata, “Electric properties on iodine doped pentacene”, Synthetic Metals, vol.121, pp.1383-1384 (2001)
[12] S. M. Sze, “Semiconductor Devices Physics and Technology”, JOHN WILLY & SONS, 2nd Edition (2002)
[13] A. B. Walker, A. Kambili, S. J. Martin, and “Electrical transport modeling in organic electroluminescence devices”, J. Phys. Condens. Matter, vol14, 9825 (2002)
[14] Eiji Shikoh, Yasuo Ando, and Terunobu Miyazaki, ”Time resolved luminescence properties of Alq3 for spin-injection into organic semiconductor”, Journal of Magnetism and Magnetic Materials, vol.272-276, pp.1921-1923 (2004)
[15] T. Wakimoto, S. Kawani, K. Nagayama, et al., Tech. Dig. Int. Symp. Inorganic and Organic Electroluminescence, Hamamatsu. 77 (1994)
[16] M. Brinkmann, V. S. Videva, A. Bieber, J. J. Andre, P. Turek,
L. Zuppiroli, P. Bugnon, M. Schaer, F. Nuesch, and
R. Humphry-Baker, “Electronic and structural Evidences for Charge Transfer and Localization in Iodine-Doped Pentacene”, J. Phys. Chem., vol.108, pp.8170-8179 (2004)
[17] Y. S. Lee, J. H. Park, and J. S. Choi, “Electrical characteristics of pentacene-based Schottky diodes”, Optical Materials, vol.21, pp.433-437 (2002)
[18] Jian Zhang, Jun Wang, Haibo Wang, and Donghang Yan, “Organic thin-film transistor in sandwich configuration”, Appl. Phys. Lett., vol.84, pp.142-144 (2004)
[19] J. H. Schön, Ch. Kloc, and B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors”, Organic Electronics, vol.1, pp.57-64 (2000)
[20] 呂伯彥, ”有機光電半導體材料之應用”, 中文半導體技術雜誌, pp.79-88, 2001/3月號
[21] A. J. Campbell, D. D. C. Bradley, E. Werner, and W. Brütting, “Transient capacitance measurements of the transport and trap states distributions in a conjugated polymer”, Organic Electronics, vol.1, pp.21-26 (2000)
[22] Cabir Temirci, and Muzaffer Cakar, “The current-voltage and capacitance-voltage characteristics of Cu/rhodamine 101/p-Si contacts”, Physica B, vol.348, pp.454-458 (2004)
[23] M. Cakar, Y. Onganer, and A. Türüt, “The nonpolymeric organic compound (pyronine-B)/p-type silicon/Sn contact barrier devices”, Synthetic Metals, vol.126, pp.213-218 (2002)
[24] M. Cakar, and A. Türüt, “The conductance and capacitance-frequency characteristics of the organic compound (pyronine-B)/p-Si structures”, Synthetic Metals, vol.138, pp.549-554 (2003)
[25] Takashi Hori, “Gate Dielectrics and MOS ULSIs”, Springer
[26] Christos D. Dimitrakopoulos, and Patrick R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics”, Advanced Materials, vol.14, No.2, pp.99-117 (2002)
[27] F. Ebisawa, T. Kurokawa, and S. Nara, ”Electrical properties of polyacetylene/polysiloxane interface”, J. Appl. Phys. vol.54, pp.3225-3259 (1983)
[28] I. H. Campbell, D. L. Smith, and J. P. Ferraris, “Electrical impedance measurements of polymer light-emitting diodes”, Appl. Phys. Lett. vol.66, pp.3030-3032 (1995)