| 研究生: |
王宗南 Wang, Tsung-Nan |
|---|---|
| 論文名稱: |
高速空氣動力式噴霧製程用於銅粉生產之研究 Production of Copper Powders by High Speed Aerodynamic Atomization |
| 指導教授: |
王覺寬
Wang, Muh-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 內混式噴嘴 、金屬粉末 、氣霧法 、粉末冶金 、銅粉 |
| 外文關鍵詞: | semi-internal mixing nozzle, copper powder, gas atomization |
| 相關次數: | 點閱:132 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討高效率半內混式噴嘴之設計及其運用於金屬粉末之噴霧製程,並探討該噴嘴生產高熔點金屬粉末之特性。利用氣霧法所生產之金屬粉末,為圓球狀之微細粉末,目前廣泛應用於電子產業與精密機械工業中,如粉末冶金鑄造與金屬粉末射出成型等。其中,以鋁、銅以及不鏽鋼這三種金屬粉末的使用量最大;以銅粉為例,全世界銅之年消費量超過一億噸,而鋼鐵類的需求量約為銅的100 倍;藉由全球金屬粉末需求量可間接了解其產業價值及重要性。本研究所建構之設備為氣氛控制之乾式噴粉設備,噴粉塔高2.5m,在噴粉過程中,噴粉塔中的氧含量控制在100 ppm以下。本研究分三個階段進行:第一階段以低熔點660oC的純鋁進行可行性測試;第二階段提高其熔煉溫度,以熔點1083oC的純銅進行噴粉測試,並探討霧化條件對噴銅製程之影響;第三階段採用粉末冶金常用成分的青銅合金(C5121)來進行噴粉製程測試,並探討霧化氣體壓力對金屬粉末特性之影響。
純銅粉末的噴霧製程實驗結果顯示,當霧化氣體壓力固定於3.0 Bar下,銅粉平均粒徑隨金屬熔湯進料率降低而遞減。當金屬熔湯進料率由2.9 kg/min降至0.87 kg/min時,銅粉之平均粒徑由99.0μm降至65.1μm;另外,當金屬熔湯進料率固定,隨著霧化氣體壓力的增加,金屬熔湯獲得較大的霧化能量,可產生微細之粉末。例如,當霧化氣體壓力由3 Bar提升至5 Bar時,其銅粉之平均粒徑由99.0μm降至67.3μm。研究結果亦顯示,當氣液質量比由0.15增加至0.51時,其產生的銅粉平均粒徑,由85.56μm大幅降至23.2μm。銅粉之表面形貌方面,由電子掃描顯微鏡所獲得之照片顯示,本研究所生產之金屬粉末皆為圓球型,具有良好之真圓度及流動性。本研究亦進一步探討此種半內混式噴嘴應用於粉末冶金材料之噴霧製程特性。採用之青銅材料為C5121,在氣液質量比0.58±0.25下,探討霧化氣體壓力對金屬粉末粒徑分佈之影響。結果顯示,當霧化壓力由3.0 bar增加至 5.0 bar時,其粉末平均粒徑Dv(50)由69.53μm降至40.98μm,而Dv(32)亦由37.75μm降至23.34μm。結果顯示,增加霧化氣體壓力可有效的降低粉末平均粒徑。由於傳統外混式金屬粉末氣霧法製程之霧化壓力皆在50 Bar以上,比本研究之製程高出一個數量級,故本研究所發展之半內混式噴嘴可以在較低的氣液質量比下,獲得微細之金屬粉末,噴嘴效能遠高於國際上現行之外混式金屬噴嘴。
This research program is to design a high efficient semi-internal mixing nozzle that used for the gas atomization processes to produce the metal powder. This new system is then used to characterize the atomization performance of the high melt-point metals. The fine metal powder produced by gas atomization has been widely used in the electronic industry and precision industry, including powder metallurgy and extrusion forming products, etc. Huge amount of metal powders of aluminum, copper and stainless steel was consumed in the world, including more than hundred million tons per year of the copper powder consumption. The iron powder consumption is even hundred times of copper powders. The experimental facility is an oxygen controlled atomization system with 2.5 meter height. The oxygen concentration in atomization tower is controlled at 100ppm level during the atomization processes. There are three phases in this research program. In the first phase, atomization of aluminum with melt point of 660°C is performed for the feasibility study. In the second phase, atomization of copper with melt point of 1083°C is performed. In the third phase, parametric study of the atomization performance of copper alloy (C5121) is performed. Results show that, for the atomization of pure copper, the Sauter mean diameter of the powder depends on the flow rate of the melt. It turns out that SMD decreases from 99.0 m to 65.1 m as the melt flow rate is decreased from 2.9 kg/min to 0.87 kg/min under the atomization gas pressure of 3.0 bar. On the other hand, SMD decreases from 99.0 m to 67.3 m as the gas pressure is increased from 3.0 bar to 5.0 bar, indicating that the extra-fine powder can be produced by raising the atomization gas pressure to provide more atomization energy to the melt. Furthermore, SMD is decreased from 85.56 m to 23.2 m as the gas-to-melt mass ratio is increased from 0.15 to 0.51. The SEM photos show the metal powders are spherical. Finally, investigation of the atomization of copper alloy (C5121) shows that SMD and Dv(50) of the metal powder decreases from 37.75m to 23.34m and from 69.53m to 40.98m, respectively, as atomization gas pressure is increased from 3.0 bar to 5.0 bar. Since the atomization process of the conventional external-mixing nozzle normally performed with pressure more than 50 bar, it is concluded that the nozzle with semi-internal mixing mechanism performs better than the conventional external-mixing nozzle in the production of ultra-fine metal powder.
[1] 馮慶芬,“粉末冶金學”,新文京開發出版有限公司,2002。
[2] Cubberly, William H., “Metal Handbook,” ninth edition, Volume 7, Powder Metallurgy, American Society for Metal, 1984.
[3] Castleman, R. A., Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
[4] Lefebvre, A. H., “Gas Turbine Combustion,”Chapter 10, Hemisphere Publishing Corporation, New York, 1983.
[5] Dombrowski, N. and Johns, W. R., “The Aerodynamic Instability and Disintergration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
[6] Stapper, B. E., Sowa, W. A. and Samuelsen, G. S., ”An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45, 1992.
[7] Fraser, R. P., ”Liquid Fuel Atomization, ” Sixth Symposium(International) on Combustion, Rein-hold, New York, pp. 687-701, 1957.
[8] Simmons, H. C., “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report No.7901/2-0, 1979.
[9] Tallmadge, J. A., “Powder Production by Gas and Water Atomization of Liquid Metals,” Powder Metallurgy Processing, Kuhn, H. S. and Lawley, A. (eds.), Academic Press, New York, NY, 1978, pp. 1-32.
[10] Tamura, K. and Takeda, T., “Production of Copper Powder by Atomization,” Trans. Nat. Res. Inst. Metals (Japan), 1963, vol. 5,pp. 252-256.
[11] German and Randall, M., Powder Metallurgy Science. Metal Powder Industries Federation, Princeton, N.J., 1994.
[12] Nukiyama, S., and Tanasawa, Y., "Experiments on Atomization of Liquids
in an Airstream," Transaction of JSME, Vol. 5, No. 18, pp. 68-75, 1939.
[13] Gretzinger, J., and Marshall, W.R. Jr, "Characteristics of Pneumatic Atomization," AIChE Journal, Vol. 7, No. 2, pp. 312-318, Jun. 1961.
[14] Kim, K.Y., and Marshall, W.R. Jr., "Drop-Size Distributions from Pneumatic Atomizers," AIChE Journal , Vol. 17, No. 3, pp. 575-584, May 1971.
[15] Tate, R.W., "Droplet Size Distribution Data for Internal-Mixing Pneumatic Atomizers," Proceeding of the 3rd ICLASS," pp. IIC/1/1-13, 1985.
[16] Beck, J. E., Lefebvre A. H. and Koblish, T. R., “Liquid Sheet Disintegration by Impinging Air Streams,”Atomization and Sprays, Vol. 1, No. 2, pp. 155-170, 1991.
[17] Beck, J. E. and Lefebvre A. H., "Airblast Atomization at Conditions of Low Air Velocity," J. Propulsion, Vol. 7, NO.2, March-April, 1991.
[18] 許耀仁,“氣衝式平面噴嘴液膜霧化特性之研究”, 國立成功大學航太所碩士論文,1993。
[19] 徐明生,“雙流體式平面噴嘴霧化特性之研究”,國立成功大學航太所碩士論文,1995。
[20] Rizk, N.K. and Lefebvre, A.H., "Spray Characteristics of Plain-jet Airblast Atomizer,” Transaction of The ASME vol. 106, July 1984.
[21] Sattelmayer, T. and Witting, S.,“Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,”ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp.465-472, 1986.
[22] Press, C., Gupta, A.K. and Semerjian, H.G., "Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer, "HTD-vol.104, pp.111-119, 1988.
[23] 楊坤和,“研究型氣助式噴嘴之噴霧特性研究”,國立成功大學航太所碩士論文,1992。
[24] Kevin, S. Chen and LefeBvre, Arthur H., "Spray Cone Angle of Effervescent Atomizers," Atomization and Sprays, vol. 4, pp.291-301, 1994
[25] 徐明生,“雙流體式平面噴嘴霧化特性之研究”,國立成功大學航太所碩士論文,1995。
[26] 王承光,“氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究”,國立成功大學航太所碩士論文,1996。
[27] Iver E. Anderson, Robert L, Terpstra, “Progress toward gas atomization processing with increased uniformity and control,” Materials Science and Engineering Vol.326,Issue. 1,pp.101-109, March 2002
[28] 王覺寬,康煜昌,徐明生,楊舒然,”氣助式平面型液態金屬霧化器特性研究,” 40th Conference on Aero. And Astro. Of ROC, Taichung, Taiwan, ROC, Dec, 1998
[29] 康煜昌,“平面型液態金屬霧化器之霧化特性研究”,國立成功大學航太所碩士論文,1998。
[30] 楊舒然,“強制式液態金屬霧化器之控制參數研究”,國立成功大學航太所碩士論文,1999。
[31] 楊哲睿,“液態金屬在噴嘴不同長寬比下之霧化特性”,國立成功大學航太所碩士論文,2002。
[32] 郭振展,“液態金屬在噴嘴低長寬比下之霧化特性”,國立成功大學航太所碩士論文,2003。
[33] 陳哲萍,“超微粒錫粉銲料之噴霧製造研究”,國立成功大學航太所碩士論文,2004。
[34] Ünal, A., “Effect of Processing Variables on Particle Size in Gas Atomization of Rapidly Solidified Aluminium Powders,” Materials Science and Technology, Vol.3, pp.1029-1039, 1987.
[35] Sedat ,Ő., “Influence of Atomizing Gas on Particle Shape of Al and Mg Powder,” Powder Technology. , Vol.102, Issue.2, Mar. 3, pp. 109-119, 1999.
[36] 徐明生,“內混式平面型液態金屬噴嘴之霧化機構及其在噴覆成型之應用”,國立成功大學航太所博士論文,1999。
[37] 林明龍,“噴霧粒子在側噴流衝擊下之動態特性”,國立成功大學航太所碩士論文,2001。
[38] 高韶豪,“微型噴嘴單束噴霧流在側吹下之粒子分布”,國立成功大學航太所碩士論文,2003。
[39] 陳品任,“金屬噴霧在衝擊氣流作用下之霧化特性”,國立成功大學航太所碩士論文,2005。
[40] 黃建敦,“金屬噴霧在基板衝擊效應下之霧化特性”,國立成功大學航太所碩士論文,2006。
[41] 張皓昀,“基板衝擊對超微粒金屬粉末噴霧製程之效應” ,國立成功大學航太所碩士論文,2007。
[42] 廖基宏,“整合型金屬粉末霧化與分級製程研究” ,國立成功大學航太所碩士論文,2008。
[43] 許明貴,“氣體對衝機制對複合金屬粉末噴霧製程之效應” ,國立成功大學航太所碩士論文,2009。
[44] R. U nal, “Improvements to close coupled gas atomization nozzle for fine powder production” Powder Metallurgy Vol. 50, NO. 1, 2007.