簡易檢索 / 詳目顯示

研究生: 蔡金榮
Yuwana, Yohan
論文名稱: 氮摻雜對孔洞碳材電容表現的影響
Effects of Nitrogen Doping on the Capacitive Performance of Porous Carbons
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 103
外文關鍵詞: ammonia doping, activated porous carbons, nitrogen doping, EDLC, Na2SO4
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Effect of nitrogen doping on the capacitive performance of porous carbons were observed by ammonia doping during heat treatment at high temperature. The activated mesophase pitch and phenol formaldehyde carbons were mixed with carbon nanotube then were doped ammonia doping at 700 C for 30 min, 1 and 2 hours. The cell equipped with each nitrogen doping on porous carbons in 1 M Na2SO4 solution can reach a high capacitance value of 250 F g-1 at 0.05 A g-1 and retention 51 % at 100 A g-1. Nitrogen content on carbon surface can increase the polarity and hydrophobicity of carbon and facilitates the wettability between electrode and electrolyte. Wettability of inner-pore carbon surface, will make the electrolyte ions penetrate into inner pores easily and promote the utilization of charge storage. Moreover, because of nitrogen doping function as non-faradaic process or electrostatics as EDLC then N-Q and N-X which positively charges affect electron transfer through the carbon frameworks. As the result, the symmetric cells can deliver high energy of 22 kW kg-1 at low discharge rate with superior stability of 92% capacitance retention after 10,000 cycles of galvanostatic charge-discharge.

    Keywords: ammonia doping, activated porous carbons, nitrogen doping, EDLC, Na2SO4

    Contents Abstract i Acknowledge ii Contents iii List of figures vi List of table ix Chapter 1 Introduction 1-1 Introduction to supercapacitor 1 1-2 EDLC Material 4 1-2-1 Carbon as an EDLC Material 4 1-2-2 Phenolic Resin 6 1-2-3 Electrolyte as an EDLC Material 12 1-2-4 Separator as an EDLC Material 14 1-3 Nitrogen enrichment as for supercapacitor 14 Chapter 2 Literature Review 2-1 Synthesis of Nitrogen Doping 17 2-1-1 Post-treatment processing 17 2-1-2 Transformation and decomposition nitrogen containing groups 19 2-2 Analysis of physical carbon material properties 21 2-2-1 Adsorption theory 21 2-2-1-1 Adsorption Isotherm 22 2-2-1-2 Brunauer Emmett Teller (BET) 25 2-2-1-3 Dubinin-Radushevich (D-R) 26 2-2-1-4 Barrett Joyner Halenda (BJH) 27 2-2-1-5 Density Functional Theory (DFT) 28 2-3 Electrical Double Layer Capacitor (EDLC) 29 2-3-1 Capacitor 29 2-3-2 Parallel Plate Capacitor 30 2-3-3 Capacitor in Series 32 2-3-4 Capacitor in Parallel 33 2-3-5 Two and three cell electrode Capacitor 35 2-4 Structure and Concept of Electric Double Layer 37 2-4-1 Electric Double Layer principle 38 2-4-2 Helmholtz Electric Double Layer Model 39 2-4-3 Stern Electric Double Layer Model 40 2-4-4 Electric Double-Layer Structure 42 2-5 Electrochemical Test Method 44 2-5-1 Cyclic Voltammetry 44 2-5-2 Electrochemical charge and discharge 46 2-5-3 Impedance Theory 48 2-5-3-1 Resistance 49 2-5-3-2 Capacitance 49 2-5-3-3 Resistor and capacitor in series 51 2-5-3-4 Resistor capacitor in parallel 52 Chapter 3 Experimental Methods and Equipment 3-1 Chemicals, materials and equipment 55 3-1-1 Chemicals and materials 55 3-1-2 Instruments and Laboratory equipment 56 3-2 Preparation of porous Carbon materials 57 3-2-1 Preparation of Phenol formaldehyde Carbon 57 3-2-1-1 Preparation of Phenol formaldehyde Resin 57 3-2-1-2 Chemical activation and pre-oxidation 59 3-2-2 Preparation of Activated meso pitch carbon 61 3-2-3 Ball milling and the CNT addition 61 3-2-4 Heat Treatment for PFR-mt and aMP-mt 61 3-2-5 Nitrogen Doping process 62 3-3 Characterization of materials 63 3-3-1 Nitrogen adsorption-desorption 63 3-3-2 Energy-disperse X-ray Spectroscopy (EDS) 63 3-3-3 Four-point probe conductivity test 63 3-4 Electrochemical characteristics 64 3-4-1 Capacitor assembling 64 3-4-2 CYCLIC VOLTAMMETRIC MEASUREMENT 65 3-4-3 Galvanostatic Charge and discharge measurement 66 3-4-4 AC Electrochemical Impedance Spectroscopy (EIS) 66 Chapter 4 Result and Discussion 4-1 Physical properties of porous carbon 67 4-1-1 Nitrogen adsorption-desorption Analysis 67 4-1-2 Energy-disperse X-ray Spectroscopy (EDS) 73 4-1-3 Four probes conductivity analysis 74 4-2 Electrochemical characterization 77 4-2-1 Analysis and discussion of the cyclic voltammograms 77 4-2-1-1 A three electrochemical cell 77 4-2-1-2 A two cell cyclic voltammetric 81 4-2-2 Analysis and discussion of the Charge and discharge Galvanometric 83 4-2-3 Analysis and discussion of the resistance of IR drop and EIS 85 4.3 Electrochemical supercapacitor behaviour 89 4.4 Literature Survey 91 Chapter 5 Conclusion 95 Reference 97

    Reference
    1. Conway, B.E. (1999) Electrochemical Supercapacitors, Plenum Publishing, New York.
    2. Kotz, R. and Carlen, M. (2000) Principles and applications of electrochemical capacitors. Electrochim. Acta, 45 (15–16), 2483–2498.
    3. Conway, B.E., Birss, V., and Wojtowicz, J. (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources, 66 (1–2), 1–14.
    4. Pandolfo, A.G. and Hollenkamp, A.F. (2006) Carbon properties and their role in supercapacitors. J. Power Sources, 157 (1), 11–27
    5. Simon, P. and Gogotsi, Y. (2008) Materials for electrochemical capacitors. Nat. Mater., 7 (11), 845–854.
    6. Armand, M. and Tarascon, J.M. (2008) Building better batteries. Nature, 451 (7179), 652–657.
    7. United States Department of Energy (2007) Basic Research Needs for Electrical Energy Storage
    8. Miller, J.R. and Burke, A.F. (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface, 17, 53–57.
    9. Robinson, F.N., Kashy, E., and McGrayne, S.B. (2010) Invention of the Leyden Jar, Encyclopedia Britannica.
    10. Becker, H.E. (1957) in Low Voltage Electrolytic Capacitor (ed. U.S.P. Office), General Electric Company, US. Pat. No. 2,800,616 and assignee: General Electric (GE).
    11. Boos, D.I. (1970) in Electrolytic Capacitor Having Carbon Paste Electrodes (ed. U.S.P. Office), The Standard Oil Company, US. Pat. No. 3,536,963 and assignee: Standard Oil of Ohio (SOHIO).
    12. Burke, A. (2007) R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta, 53 (3), 1083–1091.
    13. Frackowiak, E. (2007) Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys., 9 (15), 1774–1785.
    14. Obreja, V.V.N. (2008) On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material – A review. Physica E, 40 (7), 2596–2605.
    15. Pan, H., Li, J.Y., and Feng, Y.P. (2010) Carbon nanotubes for supercapacitor. Nanoscale Res. Lett., 5 (3), 654–668.
    16. Zhang, L.L., Zhou, R., and Zhao, X.S. (2010) Graphene-based materials as supercapacitor electrodes. J. Mater. Chem., 20 (29), 5983–5992.
    17. Wang, D.W. et al. (2008) Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage. Adv. Funct. Mater.18, 3787–3793.
    18. Naoi, K. et al. (2010) High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources, 195 (18), 6250–6254.
    19. Khomenko, V. et al. (2006) High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl. Phys. A, 82 (4), 567–573.
    20. Cooper, A. et al. (2009) The UltraBattery-A new battery design for a new beginning in hybrid electric vehicle energy storage. J. Power Sources, 188 (2), 642–649.
    21. Burke, A. and Miller, M. (2011) The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications. J. Power Sources, 196 (1), 514–522.
    22. Lazzari, M., Soavi, F., and Mastragostino, M. (2009) Dynamic pulse power and energy of ionic-liquid-based supercapacitor for HEV application. J. Electrochem. Soc., 156 (8), A661–A666.
    23. Lewandowski, A. et al. (2010) Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J. Power Sources, 195 (17), 5814–5819.
    24. McEnaney, B. and Burchell, T.D. (1999) Carbon Materials for Advanced Technologies, Pergamon.
    25. Inagaki, M. and Radovic, L.R. (2002) Nanocarbons. Carbon, 40 (12), 2279–2282.
    26. Marsh, H. (1989) Introduction to Carbon Science, Butterworths.
    27. Shi, H. (1996) Activated carbons and double layer capacitance. Electrochim. Acta, 41 (10), 1633–1639.
    28. Endo, M. et al. (2001) Morphological effect on the electrochemical behavior of electric double-layer capacitors. J. Mater. Res., 16 (12), 3402–3410.
    29. Arulepp, M. et al. (2004) Influence of the solvent properties on the characteristics of a double layer capacitor. J. Power Sources, 133 (2), 320–328
    30. Gryglewicz, G. et al. (2005) Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electtrochim. Acta, 50 (5), 1197–1206.
    31. Fang, B.Z. and Binder, L. (2006) A novel carbon electrode material for highly improved EDLC performance. J. Phys. Chem. B, 110 (15), 7877–7882.
    32. Azais, P. et al. (2007) Causes of supercapacitors ageing in organic electrolyte. J. Power Sources, 171 (2), 1046–1053.
    33. Zhu, M. et al. (2008) Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes. Carbon, 46 (14), 1829–1840.
    34. Leon y Leon, C.A. and Radovic, L.R. (1994) Chemistry and Physics of Carbon, Marcel Dekker Inc., New York
    35. Frackowiak, E. et al. (1999) Capacitance properties of carbon nanotubes, Electronic Properties of Novel Materials - Science and Technology of Molecular Nanostructures: XII International Winterschool, American Institute of Physics Secaucus, College Park, AIP Conference Proceedings Series Vol. 486, pp. 429–432.
    36. Jurewicz, K. et al. (2001) Supercapacitors from nanotubes/polypyrrole composites. Chem. Phys. Lett., 347 (1–3), 36–40.
    37. 81. Liu, C. et al. (2010) Advanced materials for energy storage. Adv. Mater., 22 (8), E28–E62. 82. Futaba, D.N. et al. (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater., 5 (12), 987–994.
    38. Zhang, H. et al. (2008) Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes. J. Electrochem. Soc., 155 (2), K19–K22.
    39. Bordjiba, T., Mohamedi, M., and Dao, L.H. (2008) New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv. Mater., 20 (4), 815–819.
    40. L. L. Zhang and X. S. Zhao, "Carbon-based materials as supercapacitor electrodes," Chem Soc Rev, vol. 38, pp. 2520-31, Sep 2009.
    41. T. Alvarez, A. B. Fuertes, J. J. Pis, J. B. Parra, J. Pajares, R. Menendez, Fuel, 73, 1358, 1994
    42. J. Rivera-Utrilla, M. Sanchez-Polo, V. Gomez-Serrano, P. M. Alvarez, M. C. M. Alvim-Ferraz and J. M. Dias, J. Hazard. Mater., 2011,187,1
    43. B. Stohr, H. P. Boehm and R. Schlogl,Carbon, 1991,29, 707.
    44. H. P. Boehm, G. Mair, T. Stoehr, A. R. de Rincon and B. Tereczki, Fuel , 1984, 63 , 1061
    45. M. S. Shafeeyan and W. M. A. W. Daud,J. Anal. Appl.Pyrolysis, 2010,89, 143.
    46. J. Zawadzki and M. Wisniewski,Carbon, 2003,41, 2257
    47. D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori,Z. H. Zhu and G. Q. Lu,Adv. Funct. Mater, 2009,19, 1800
    48. R. Pietrzak, H. Wachowska, P. Nowicki and K. Babel,FuelProcess. Technol., 2007,88, 409.
    49. R. Pietrzak, H. Wachowska and P. Nowicki,Energy Fuels,2006,20, 1275.
    50. R. Pietrzak, K. Jurewicz, P. Nowicki, K. Babe1andH. Wachowska,Fuel, 2010,89, 3457
    51. M. M. Titirici, A. Thomas and M. Antonietti,J. Mater. Chem.,2007,17, 3412.
    52. V. A. Likholobov, L. G. P’yanova, A. I. Boronin,S. V. Koshcheev, A. N. Salanov, O. N.Bklanova,O. A. Knyazheva and A. V. Veselovskaya,Prot. Met. Phys.Chem. Surf., 2011,47, 81.
    53. M. Longhi, V. Bertacche, C. L. Bianchi and L. Formaro,Chem. Mater., 2006,18, 4130
    54. P. Nowicki, R. Pietrzak and H. Wachowska,Energy Fuels,2009,23, 2205.
    55. C. M. Yang, C. Weidenthaler, B. Spliethoff, M. Mayanna andF. Schueth,Chem. Mater., 2005,17,355.
    56. A. B. Fuertes and T. A. Centeno,J. Mater. Chem., 2005,15,1079.
    57. M. Lezanska, J. Wloch and J. Kornatowski,Stud. Surf. Sci.Catal., 2008,174B, 945.
    58. S. Kundu, W. Xia, W. Busser, M. Becker, D. A. Schmidt,M. Havenith and M. Muhler, Phys.Chem. Chem. Phys.,2010,12, 4351
    59. Q. Zhu, S. L. Money, A. E. Russell and K. M. Thomas,Langmuir, 1997,13, 2149.
    60. J. M. Jones, Q. Zhu and K. M. Thomas,Carbon, 1999,37,1123
    61. H. Schmiers, J. Friebel, P. Streubel, R. Hesse and R. K̈opsel,Carbon, 1999,37, 1965.
    62. K. Laszlo, E. Tombacz and K. Josepovits,Carbon, 2001,39,1217
    63. B. Xiao, J. P. Boudou and K. M. Thomas,Langmuir, 2005,21,3400.
    64. M. Perez-Cadenas, C. Moreno-Castilla, F. Carrasco-Marnand A. F. Perez-Cadenas,Langmuir, 2009,25, 466
    65. H. F. Gorgulho, F. Gonçalves, M. F. R. Pereira andJ. L. Figueiredo,Carbon, 2009,47, 2032
    66. L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, et al., "Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage," RSC Advances, vol. 2, p. 4498, 2012
    67. Preparation of Porous Carbons from Phenol-Formaldehyde Resins of Different Compositions, 2001, C. C. Lin, H. S. Teng
    68. Yamashita, Y.; Ouchi, K. Carbon, 20, 41, 1982
    69. I. G. M. J. , G. G. C, S. M. Lecea, L. Solano, Energy Fuels, 10, 1108, 1996
    70. H. Teng, J. A. H, Y. F.Hsu, C. T. Hsieh, Ind. Eng. Chem. Res. 35, 4043, 1996
    71. T. Alvarez, A. B. Fuertes, J. J. Pis, J. B. Parra, J. Pajares, R. Menendez, Fuel, 73, 1358, 1994
    72. Preparation of Porous Carbons from Phenol-Formaldehyde Resins of Different Compositions 林吉成
    73. A. Szczurek, K. jurewicz, G. A. Labat, V. Fierro, A. Pizzi, A. Celzard Carbon 48 2010 3874-3883
    74. T. Horikawa, K. Ogawa, K. Mizuno, J. Hayashi, K. Muroyama Carbon, 41, 2003, 465-472
    75. F. Y. Yuan, H. B. Zhang, X. Li, H. L. Ma, X. Z. Li, Z. Z. Yu Carbon, 68, 2014, 653-661
    76. L. Liu, J. Yang, Q. Meng J Sol-Gel Sci Technol (2013) 67, 304-311
    77. C. L. Liu, W. Dong, G. Cao, J. Song, L. Liu, Y. Yang Journal of The Electrochemical Society 155, 1, F1-F7, 2008
    78. R. Xue, J. Yan, X. Liu, Y. Tian, B. Yi J. Appl. Electrochem. (2011) 41 1357-1366
    79. Z. Zheng, Q. Gao Journal of Power Sources 196 (2011) 1615-1619
    80. H. Chen, F. Wang, S. Tong, S. Guo, X. Pan Applied Surface Science 2012, 258, 6097-6102
    81. Y. Lv, F. Zhang, Y. Dou, Y. Zhai, J. Wang, H. Liu, Y. Xia, B. Tu, D. Zhao J. Mater. Chem., 2012, 22, 93
    82. T. Cai, M. Zhou, G. Han, S. Guan Journal of power souces 241 2013 6-11
    83. S. Brunauer, The Adsorption of Gases and Vapor. Vol. 1, Physical Adsorption, Princeton University, Princeton, Now York, 1943.
    84. J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed., 38 (1999) 56.
    85. S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc., 60 (1938) 390.
    86. R. Ryoo, S.H. Joo, S. Jun, J. Phys. Chem. B, 103 (1999) 7743
    87. A.H. Schoen, NASH Technical Note D-5541; NASH: Washington, DC, 1970.
    88. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angew. Chem., Int. Ed., 48 (2009) 7752.
    89. P. Tarazona, U.M.B. Marconi, R. Evans, Mol. Phys., 60 (1987) 543
    90. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-Ray photoelectron spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, 1979.
    91. H.D. Young, Physics, Addison-Wesley Publishing Co. :New York, 1992.
    92. A.J. Bard, L.R. Faulkner, Electrochemical Principles, Methods, and Applications, Oxford University, Britain, 1996.
    93. D. Qu, H. Shi, J. Power Sources 74 (1998) 99. C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-Vch :New York, (1998).
    94. J.S. Mattson, Jr. H.B. Mark, Activated Carbon : Surface Chemistry and Adsorption from Solution, Wiley-Vch :New York, 1998
    95. A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamental and Application, John Wiley & Sons, Canada, 1980.
    96. B.E. Conway, Electrochemical supercapacitors scientific fundamentals and technological applications, Kluwer Academic, New York, 1999, 105.
    97. M.G. MJ, I. G. MJ. M. M.JM, L.S A, S. M. delecea C, Energy fuels 1992; 6:9
    98. M.S. Shafeeyan and W. M. A. W. Daud, J. Anal. Appl. Pyrolysis, 2010, 89, 143
    99. Ismagilova, Z. R; Shalaginaa, A.E Structure and electrical conductivity of nitrogen doped carbon nanofibers. Carbon 2009, 47, 1922-1929
    100. Electrochimica Acta 86 (2012) 260–267
    101. Material chemistry and physics 148 (2014) 903-908
    102. Applied Surface Science 258 (2012) 3726–3731
    103. Electrochimica acta (2015) 456-463
    104. Carbon 50 (2012) 4239 -4251
    105. Nano Energy (2015) 12, 141 -151
    106. CARBON 48 (2010) 4351–4361
    107. Journal of colloid and interface science 407 (2013) 416-424
    108. L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, et al., "Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage," RSC Advances, vol. 2, p. 4498, 2012.
    109. Y.-H. Lee, K.-H. Chang, and C.-C. Hu, "Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes," Journal of Power Sources, vol. 227, pp. 300-308, 2013.

    無法下載圖示 校內:2020-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE