| 研究生: |
蔡金榮 Yuwana, Yohan |
|---|---|
| 論文名稱: |
氮摻雜對孔洞碳材電容表現的影響 Effects of Nitrogen Doping on the Capacitive Performance of Porous Carbons |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 外文關鍵詞: | ammonia doping, activated porous carbons, nitrogen doping, EDLC, Na2SO4 |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Effect of nitrogen doping on the capacitive performance of porous carbons were observed by ammonia doping during heat treatment at high temperature. The activated mesophase pitch and phenol formaldehyde carbons were mixed with carbon nanotube then were doped ammonia doping at 700 C for 30 min, 1 and 2 hours. The cell equipped with each nitrogen doping on porous carbons in 1 M Na2SO4 solution can reach a high capacitance value of 250 F g-1 at 0.05 A g-1 and retention 51 % at 100 A g-1. Nitrogen content on carbon surface can increase the polarity and hydrophobicity of carbon and facilitates the wettability between electrode and electrolyte. Wettability of inner-pore carbon surface, will make the electrolyte ions penetrate into inner pores easily and promote the utilization of charge storage. Moreover, because of nitrogen doping function as non-faradaic process or electrostatics as EDLC then N-Q and N-X which positively charges affect electron transfer through the carbon frameworks. As the result, the symmetric cells can deliver high energy of 22 kW kg-1 at low discharge rate with superior stability of 92% capacitance retention after 10,000 cycles of galvanostatic charge-discharge.
Keywords: ammonia doping, activated porous carbons, nitrogen doping, EDLC, Na2SO4
Reference
1. Conway, B.E. (1999) Electrochemical Supercapacitors, Plenum Publishing, New York.
2. Kotz, R. and Carlen, M. (2000) Principles and applications of electrochemical capacitors. Electrochim. Acta, 45 (15–16), 2483–2498.
3. Conway, B.E., Birss, V., and Wojtowicz, J. (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources, 66 (1–2), 1–14.
4. Pandolfo, A.G. and Hollenkamp, A.F. (2006) Carbon properties and their role in supercapacitors. J. Power Sources, 157 (1), 11–27
5. Simon, P. and Gogotsi, Y. (2008) Materials for electrochemical capacitors. Nat. Mater., 7 (11), 845–854.
6. Armand, M. and Tarascon, J.M. (2008) Building better batteries. Nature, 451 (7179), 652–657.
7. United States Department of Energy (2007) Basic Research Needs for Electrical Energy Storage
8. Miller, J.R. and Burke, A.F. (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface, 17, 53–57.
9. Robinson, F.N., Kashy, E., and McGrayne, S.B. (2010) Invention of the Leyden Jar, Encyclopedia Britannica.
10. Becker, H.E. (1957) in Low Voltage Electrolytic Capacitor (ed. U.S.P. Office), General Electric Company, US. Pat. No. 2,800,616 and assignee: General Electric (GE).
11. Boos, D.I. (1970) in Electrolytic Capacitor Having Carbon Paste Electrodes (ed. U.S.P. Office), The Standard Oil Company, US. Pat. No. 3,536,963 and assignee: Standard Oil of Ohio (SOHIO).
12. Burke, A. (2007) R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta, 53 (3), 1083–1091.
13. Frackowiak, E. (2007) Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys., 9 (15), 1774–1785.
14. Obreja, V.V.N. (2008) On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material – A review. Physica E, 40 (7), 2596–2605.
15. Pan, H., Li, J.Y., and Feng, Y.P. (2010) Carbon nanotubes for supercapacitor. Nanoscale Res. Lett., 5 (3), 654–668.
16. Zhang, L.L., Zhou, R., and Zhao, X.S. (2010) Graphene-based materials as supercapacitor electrodes. J. Mater. Chem., 20 (29), 5983–5992.
17. Wang, D.W. et al. (2008) Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage. Adv. Funct. Mater.18, 3787–3793.
18. Naoi, K. et al. (2010) High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources, 195 (18), 6250–6254.
19. Khomenko, V. et al. (2006) High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl. Phys. A, 82 (4), 567–573.
20. Cooper, A. et al. (2009) The UltraBattery-A new battery design for a new beginning in hybrid electric vehicle energy storage. J. Power Sources, 188 (2), 642–649.
21. Burke, A. and Miller, M. (2011) The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications. J. Power Sources, 196 (1), 514–522.
22. Lazzari, M., Soavi, F., and Mastragostino, M. (2009) Dynamic pulse power and energy of ionic-liquid-based supercapacitor for HEV application. J. Electrochem. Soc., 156 (8), A661–A666.
23. Lewandowski, A. et al. (2010) Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J. Power Sources, 195 (17), 5814–5819.
24. McEnaney, B. and Burchell, T.D. (1999) Carbon Materials for Advanced Technologies, Pergamon.
25. Inagaki, M. and Radovic, L.R. (2002) Nanocarbons. Carbon, 40 (12), 2279–2282.
26. Marsh, H. (1989) Introduction to Carbon Science, Butterworths.
27. Shi, H. (1996) Activated carbons and double layer capacitance. Electrochim. Acta, 41 (10), 1633–1639.
28. Endo, M. et al. (2001) Morphological effect on the electrochemical behavior of electric double-layer capacitors. J. Mater. Res., 16 (12), 3402–3410.
29. Arulepp, M. et al. (2004) Influence of the solvent properties on the characteristics of a double layer capacitor. J. Power Sources, 133 (2), 320–328
30. Gryglewicz, G. et al. (2005) Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electtrochim. Acta, 50 (5), 1197–1206.
31. Fang, B.Z. and Binder, L. (2006) A novel carbon electrode material for highly improved EDLC performance. J. Phys. Chem. B, 110 (15), 7877–7882.
32. Azais, P. et al. (2007) Causes of supercapacitors ageing in organic electrolyte. J. Power Sources, 171 (2), 1046–1053.
33. Zhu, M. et al. (2008) Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes. Carbon, 46 (14), 1829–1840.
34. Leon y Leon, C.A. and Radovic, L.R. (1994) Chemistry and Physics of Carbon, Marcel Dekker Inc., New York
35. Frackowiak, E. et al. (1999) Capacitance properties of carbon nanotubes, Electronic Properties of Novel Materials - Science and Technology of Molecular Nanostructures: XII International Winterschool, American Institute of Physics Secaucus, College Park, AIP Conference Proceedings Series Vol. 486, pp. 429–432.
36. Jurewicz, K. et al. (2001) Supercapacitors from nanotubes/polypyrrole composites. Chem. Phys. Lett., 347 (1–3), 36–40.
37. 81. Liu, C. et al. (2010) Advanced materials for energy storage. Adv. Mater., 22 (8), E28–E62. 82. Futaba, D.N. et al. (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater., 5 (12), 987–994.
38. Zhang, H. et al. (2008) Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes. J. Electrochem. Soc., 155 (2), K19–K22.
39. Bordjiba, T., Mohamedi, M., and Dao, L.H. (2008) New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv. Mater., 20 (4), 815–819.
40. L. L. Zhang and X. S. Zhao, "Carbon-based materials as supercapacitor electrodes," Chem Soc Rev, vol. 38, pp. 2520-31, Sep 2009.
41. T. Alvarez, A. B. Fuertes, J. J. Pis, J. B. Parra, J. Pajares, R. Menendez, Fuel, 73, 1358, 1994
42. J. Rivera-Utrilla, M. Sanchez-Polo, V. Gomez-Serrano, P. M. Alvarez, M. C. M. Alvim-Ferraz and J. M. Dias, J. Hazard. Mater., 2011,187,1
43. B. Stohr, H. P. Boehm and R. Schlogl,Carbon, 1991,29, 707.
44. H. P. Boehm, G. Mair, T. Stoehr, A. R. de Rincon and B. Tereczki, Fuel , 1984, 63 , 1061
45. M. S. Shafeeyan and W. M. A. W. Daud,J. Anal. Appl.Pyrolysis, 2010,89, 143.
46. J. Zawadzki and M. Wisniewski,Carbon, 2003,41, 2257
47. D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori,Z. H. Zhu and G. Q. Lu,Adv. Funct. Mater, 2009,19, 1800
48. R. Pietrzak, H. Wachowska, P. Nowicki and K. Babel,FuelProcess. Technol., 2007,88, 409.
49. R. Pietrzak, H. Wachowska and P. Nowicki,Energy Fuels,2006,20, 1275.
50. R. Pietrzak, K. Jurewicz, P. Nowicki, K. Babe1andH. Wachowska,Fuel, 2010,89, 3457
51. M. M. Titirici, A. Thomas and M. Antonietti,J. Mater. Chem.,2007,17, 3412.
52. V. A. Likholobov, L. G. P’yanova, A. I. Boronin,S. V. Koshcheev, A. N. Salanov, O. N.Bklanova,O. A. Knyazheva and A. V. Veselovskaya,Prot. Met. Phys.Chem. Surf., 2011,47, 81.
53. M. Longhi, V. Bertacche, C. L. Bianchi and L. Formaro,Chem. Mater., 2006,18, 4130
54. P. Nowicki, R. Pietrzak and H. Wachowska,Energy Fuels,2009,23, 2205.
55. C. M. Yang, C. Weidenthaler, B. Spliethoff, M. Mayanna andF. Schueth,Chem. Mater., 2005,17,355.
56. A. B. Fuertes and T. A. Centeno,J. Mater. Chem., 2005,15,1079.
57. M. Lezanska, J. Wloch and J. Kornatowski,Stud. Surf. Sci.Catal., 2008,174B, 945.
58. S. Kundu, W. Xia, W. Busser, M. Becker, D. A. Schmidt,M. Havenith and M. Muhler, Phys.Chem. Chem. Phys.,2010,12, 4351
59. Q. Zhu, S. L. Money, A. E. Russell and K. M. Thomas,Langmuir, 1997,13, 2149.
60. J. M. Jones, Q. Zhu and K. M. Thomas,Carbon, 1999,37,1123
61. H. Schmiers, J. Friebel, P. Streubel, R. Hesse and R. K̈opsel,Carbon, 1999,37, 1965.
62. K. Laszlo, E. Tombacz and K. Josepovits,Carbon, 2001,39,1217
63. B. Xiao, J. P. Boudou and K. M. Thomas,Langmuir, 2005,21,3400.
64. M. Perez-Cadenas, C. Moreno-Castilla, F. Carrasco-Marnand A. F. Perez-Cadenas,Langmuir, 2009,25, 466
65. H. F. Gorgulho, F. Gonçalves, M. F. R. Pereira andJ. L. Figueiredo,Carbon, 2009,47, 2032
66. L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, et al., "Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage," RSC Advances, vol. 2, p. 4498, 2012
67. Preparation of Porous Carbons from Phenol-Formaldehyde Resins of Different Compositions, 2001, C. C. Lin, H. S. Teng
68. Yamashita, Y.; Ouchi, K. Carbon, 20, 41, 1982
69. I. G. M. J. , G. G. C, S. M. Lecea, L. Solano, Energy Fuels, 10, 1108, 1996
70. H. Teng, J. A. H, Y. F.Hsu, C. T. Hsieh, Ind. Eng. Chem. Res. 35, 4043, 1996
71. T. Alvarez, A. B. Fuertes, J. J. Pis, J. B. Parra, J. Pajares, R. Menendez, Fuel, 73, 1358, 1994
72. Preparation of Porous Carbons from Phenol-Formaldehyde Resins of Different Compositions 林吉成
73. A. Szczurek, K. jurewicz, G. A. Labat, V. Fierro, A. Pizzi, A. Celzard Carbon 48 2010 3874-3883
74. T. Horikawa, K. Ogawa, K. Mizuno, J. Hayashi, K. Muroyama Carbon, 41, 2003, 465-472
75. F. Y. Yuan, H. B. Zhang, X. Li, H. L. Ma, X. Z. Li, Z. Z. Yu Carbon, 68, 2014, 653-661
76. L. Liu, J. Yang, Q. Meng J Sol-Gel Sci Technol (2013) 67, 304-311
77. C. L. Liu, W. Dong, G. Cao, J. Song, L. Liu, Y. Yang Journal of The Electrochemical Society 155, 1, F1-F7, 2008
78. R. Xue, J. Yan, X. Liu, Y. Tian, B. Yi J. Appl. Electrochem. (2011) 41 1357-1366
79. Z. Zheng, Q. Gao Journal of Power Sources 196 (2011) 1615-1619
80. H. Chen, F. Wang, S. Tong, S. Guo, X. Pan Applied Surface Science 2012, 258, 6097-6102
81. Y. Lv, F. Zhang, Y. Dou, Y. Zhai, J. Wang, H. Liu, Y. Xia, B. Tu, D. Zhao J. Mater. Chem., 2012, 22, 93
82. T. Cai, M. Zhou, G. Han, S. Guan Journal of power souces 241 2013 6-11
83. S. Brunauer, The Adsorption of Gases and Vapor. Vol. 1, Physical Adsorption, Princeton University, Princeton, Now York, 1943.
84. J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed., 38 (1999) 56.
85. S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc., 60 (1938) 390.
86. R. Ryoo, S.H. Joo, S. Jun, J. Phys. Chem. B, 103 (1999) 7743
87. A.H. Schoen, NASH Technical Note D-5541; NASH: Washington, DC, 1970.
88. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angew. Chem., Int. Ed., 48 (2009) 7752.
89. P. Tarazona, U.M.B. Marconi, R. Evans, Mol. Phys., 60 (1987) 543
90. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-Ray photoelectron spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, 1979.
91. H.D. Young, Physics, Addison-Wesley Publishing Co. :New York, 1992.
92. A.J. Bard, L.R. Faulkner, Electrochemical Principles, Methods, and Applications, Oxford University, Britain, 1996.
93. D. Qu, H. Shi, J. Power Sources 74 (1998) 99. C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-Vch :New York, (1998).
94. J.S. Mattson, Jr. H.B. Mark, Activated Carbon : Surface Chemistry and Adsorption from Solution, Wiley-Vch :New York, 1998
95. A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamental and Application, John Wiley & Sons, Canada, 1980.
96. B.E. Conway, Electrochemical supercapacitors scientific fundamentals and technological applications, Kluwer Academic, New York, 1999, 105.
97. M.G. MJ, I. G. MJ. M. M.JM, L.S A, S. M. delecea C, Energy fuels 1992; 6:9
98. M.S. Shafeeyan and W. M. A. W. Daud, J. Anal. Appl. Pyrolysis, 2010, 89, 143
99. Ismagilova, Z. R; Shalaginaa, A.E Structure and electrical conductivity of nitrogen doped carbon nanofibers. Carbon 2009, 47, 1922-1929
100. Electrochimica Acta 86 (2012) 260–267
101. Material chemistry and physics 148 (2014) 903-908
102. Applied Surface Science 258 (2012) 3726–3731
103. Electrochimica acta (2015) 456-463
104. Carbon 50 (2012) 4239 -4251
105. Nano Energy (2015) 12, 141 -151
106. CARBON 48 (2010) 4351–4361
107. Journal of colloid and interface science 407 (2013) 416-424
108. L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, et al., "Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage," RSC Advances, vol. 2, p. 4498, 2012.
109. Y.-H. Lee, K.-H. Chang, and C.-C. Hu, "Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes," Journal of Power Sources, vol. 227, pp. 300-308, 2013.
校內:2020-08-25公開