簡易檢索 / 詳目顯示

研究生: 姜子健
Keong, Chi Kin
論文名稱: 半導體廠房廢水處理與回收成本架構與分析
Wastewater Treatment and Recycling Cost Framework and Analysis for Semiconductor Plants
指導教授: 張行道
Chang, Andrew S
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 75
中文關鍵詞: 水資源管理半導體廠房水處理回收成本架構
外文關鍵詞: water resource management, semiconductor plant, water treatment, water reclaim, cost framework
相關次數: 點閱:126下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高科技產業生產需要用水,伴隨製程技術的提昇,用水水質及需求量提高,為了降低對原水的依賴,可投資回收水系統,而水資源回收及管理需要思考水質、水量與成本的關係。
    本研究建立半導體廠房廢水處理與回收成本架構,藉由個案廠房水系統資料,了解水處理與回收系統的運轉模式,分析回收水的成本。水系統分純水、水處理與水回收三大系統,其成本項目有四類購置、操作、改善及排放成本。購置成本細分為系統折舊與自來水成本,操作成本細分為電力、人力、物料與維護保養,排放成本分廢水與污泥排放。
    分析結果顯示,純水系統佔總成本40%,其次是水處理系統的37.5%,和水回收系統的22.5%。四類成本中操作成本最高,佔總成本的63~68%,最少的是資本折舊,只佔5%。而純水、水處理與水回收系統的運轉單價分別是18.42、21.81、8.61元/m3。
    使廢水排放達到管理局的排放標準,是投資水處理系統的目的。經分析管理局的三個主要水質要求:化學需氧量、懸浮固體和氨氮濃度,其中調整懸浮固體的數值以達標準<=15mg/L,是水處理系統成本的主要花費。
    經處理回收後的水,可補充廠房自來水用量,稱為可節省水量,以此算出每噸節省水需24.06元,減去自來水價的12.7元/m3,得每噸水的環境成本為11.36元。
    本研究以真實案例建立的回收水架構與其成本組成,分析得出回收水單位環境成本,適用於台灣科學園區內的高科技產業,可供不同廠房參照使用。

    Wastewater Treatment and Recycling Cost Framework
    and Analysis for Semiconductor Plants

    Keong Chi Kin
    Prof. Andrew S. Chang
    Department of Civil Engineering, College of Engineering

    SUMMARY

    Water plays an essential role for the production of the high-tech industry. As technology for semiconductor products advances, the requirements of water quality and water demand also increase. In order to reduce the dependence on raw water, water reuse and management need to take water quality, quantity, and cost into consideration.
    This study establishes the cost framework of wastewater recycling for manufacturing plants. It analyzes the operations and cost data of water related systems of a case plant. The cost of recycled water comes from ultra-pure water (UPW), wastewater treatment (WWT), and water reclaim (RE) system. The percentage of the total cost for UPW, WWT and RE system are 40%, 35%, and 25%, respectively. The cost includes four aspects, which are purchase, operating, improved, and discharge expenses. Operating cost is the highest among the four cost items, which accounts for 60~68% of the total cost. In sum, the operation unit price of UPW, WWT and RE systems are $17.11, $21.77, and $8.54 per ton water, respectively.
    One of the purposes of investing WWT system is to make the wastewater reach the discharge standards set by the industrial park authority. The major cost of WWT system is based on three major water quality requirements set by authority. They are chemical oxygen demand, suspended solids, and ammonia concentration, which adjust the value of suspended solids to achieve a standard <=15mg/L. As a result, reuse water cost $23.9/ton. Subtracting the price of tap water, $12.7/ton, the green cost of reuse water used in a semiconductor plant is $11.21/ton.

    Keywords: water resource management, semiconductor plant, water treatment, water reclaim, cost component

    INTRODUCTION

    Water shortage is worsening due to the climate change caused by human beings. The annual water consumption in Taiwan is 3,950 ton per capita, which takes up 12.2% of the world average (Huang, 2013). As the industry is an important user of water resource, factories play a vital role to show positive impacts in striking a balance between water use and water protection (WBCSD, 2005). As a matter of fact, industry wastewater causes pollution as low-efficiency water use causes more wastewater. Therefore, recycling of industry water has become an important issue (Jiang, 2011).

    Water reuse has long been recognized as a potential intervention strategy in addressing water scarcity (Hamoda, 2004). To encourage industry water reuse, Taiwan science park regulates the processing water reuse rate of the factories to be more than 85% (STSP, 2004).

    Thus, this research focuses on studying the reasonable cost of water reuse and the relationship between water reuse and cost. This study analyzes the relationship between processing water reuse and cost in a semiconductor plant. In the study, we analyze the water balance diagram, establish its water system cost framework, collect the data from WWT and RE system, and calculate the optimal wastewater costs. Meanwhile, the cost for required discharge water is also analyzed.

    MATERIALS AND METHODS

    Using case study as a method, this study analyzes a semiconductor plant which is located in science park. The study reviews the literature and the cost factors of water reuse. Then, it analyzes the operation of processing water treatment and recycling system. The system data is thus collected and the staff of the manufacturing plant is interviewed in order to analyze the water reuse cost. Finally, the relationship between cost and water reuse is obtained.

    This research refers to a significant amount of information, which includes four different sources of data: (1) purchase costs from interview or assumption, (2) operating costs from different fees, system record tables, water consumptions, etc., (3) improvement costs from system records, and (4) discharge costs from discharge fees paid to the science park.

    RESULTS AND DISCUSSION

    This study analyzes the data of a plant collected from 2010 to 2013. The WWT system of the plant in our case study includes AWD, HF, CMP, Cu-CMP, and BW system. RE system includes DIR, AWR, LSR, and CCR system.

    From the costs of four years, UPW system costs 40% of the total cost, WWT system costs 35%, and RE systems cost 25%. Furthermore, UPW system’s electricity cost, WWT system’s dosing chemical cost, and RE system’s improved cost are the main affecting factors of the total water reuse cost.

    The operation unit prices of UPW, WWT, and RE system are $17.11, $21.77, and $8.54 per ton water, respectively. The cost of plant spent on achieveing the discharge standard set by the authority or the internal requirements are comparable, namely 53% for authority requirements and 47% for internal recycle requirements.

    One of the purposes of the processing water reuse is to supplement the amount of tap water used. Reducing the tap water use means reducing the tap water cost. In summary, the quantity of water supplement can be named as the quantity of water saved. As a result, the cost of water-saving is $23.91/ton and the green cost of recycled water is $11.21/ton. Compared with the water price of $12.7/ton, water reuse is not worthwhile. It is more economical if the plant decides to use tap water as their main water supply than to use part of the reuse water. However, water is priceless, and thus wastewater reuse is a trend to reduce the tap water need.

    CONCLUSION

    This study analyzes the efficiency between water reuse cost and low cost of tap water. The results of total and unit water costs of water systems are constructive. The cost framework and analysis can be used for other plants. Water reuse is related to tap water and wastewater discharge. The management of water reuse can be planned according to the results of this study.

    目錄 摘要 i Abstract ii 誌謝 v 目錄 vi 表目錄 ix 圖目錄 x 第1章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法與步驟 2 1.3 研究範圍與限制 4 第2章 文獻回顧 6 2.1 水資源利用 6 2.1.1 國家層級的考量 6 2.1.2 半導體產業 7 2.2 科學園區水回收及相關規定 8 2.2.1 用水回收率之標準 8 2.2.2 園區的用水與用電規定 10 2.3 回收水所需成本 11 2.3.1 半導體業用水、廢水與回收水分類 11 2.3.2 回收水成本計算 12 2.3.3 影響回收水成本的因子 13 2.4 環境成本 16 2.4.1 環境成本的重要性 16 2.4.2 我國環境會計制度 17 第3章 廠房水系統運轉與成本架構內容 20 3.1 水處理回收系統及流程 20 3.1.1 廠房的水平衡圖 20 3.1.2 水系統流程 22 3.2 水處理與回收系統技術 24 3.2.1 酸性廢水處理系統 (Acidic waste drain , AWD) 25 3.2.2 氫氟酸廢水處理系統 (Hydrofluoric acid drain, HF) 25 3.2.3 化學機械研磨廢水處理系統(Chemical mechanical polishing, CMP) 25 3.2.4 含銅化學機械研磨廢水處理系統(Cu-CMP) 26 3.2.5 逆洗處理系統(Backwash, BW) 26 3.2.6 區域尾氣廢水回收系統(Local scrubber reclaim , LSR) 27 3.2.7 含銅化學機械研磨廢水回收系統(Cu-CMP reclaim, CCR) 27 3.3 水系統成本架構與內容 28 3.3.1 成本架構的建立 28 3.3.2 四類成本內容 30 3.4 小結 33 第4章 水系統成本分析 34 4.1 購置成本與自來水成本 34 4.1.1 水系統資本成本 34 4.1.2 自來水成本 35 4.2 操作成本 36 4.2.1 電力成本 36 4.2.2 物料消耗成本 37 4.2.3 人力成本 38 4.2.4 維護保養成本 38 4.3 改善及排放成本 39 4.3.1 改善成本 39 4.3.2 排放成本 41 4.4 成本整合分析 42 4.4.1 一年之水系統成本分析 42 4.4.2 水系統成本趨勢 45 4.4.3 水系統運轉單價 48 4.5 小結 50 第5章 水系統成本與環境 51 5.1 水回收率與回收水成本 51 5.1.1 廠房水回收率 51 5.1.2 回收水成本 52 5.1.3 回收水的環境成本 55 5.2 排放標準與花費成本 57 5.2.1 園區規定之排放標準 57 5.2.2 廠房內部的排放回收標準 59 5.2.3 為達回收排放標準的成本 63 5.3 水處理回收成本與水價 65 5.3.1 回收水所節省之成本 65 5.3.2 投資水處理回收系統可節省的成本 66 第6章 結論與建議 69 6.1 結論 69 6.2 建議 71 參考文獻 73

    參考文獻
    英文文獻
    1. AFED, 2010 Arab Environment: water. Sustainable management of a scarce resource. In: El-Ashry, M., Saab, N., Zeitoon, B. (Eds.), Reports of the Arab Forum for Environment and Development. Arab Forum for Environment and Development, Beirut.
    2. Burritt, R. L., Saka, C. (2006). “Environmental management accounting applications and eco-efficiency: case studies from Japan.” Journal of Cleaner Production, Vol. 14, pp. 1262~1275.
    3. Environmental Performance Indicators for Business (Fiscal Year 2000Version), February 2001, The Ministry of the Environment Government of Japan.
    4. Fang, H.K., Wei, H.J. (2002). “Application of electrodeionization (EDI) in the water treatment of power plant.” Water Purif. Technol, Vol. 21, pp. 17-19.
    5. Hamoda, M. F. (2004). “Water strategies and potential of water reuse in the south Mediterranean countries.” Desalination, Vol. 165, pp. 31-41.
    6. Horngren and Harrison. (2008). Financial Accounting Managerial, Pearson, LTD.
    7. Huang, B. N., Wang, F., Zhang, B. (2006). “Preparation of ultra-pure water by electrodeionization process instead of mixed bed.” Technol. Water Treat, Vol. 32, pp. 77-79.
    8. ISMI (2009), Semiconductor Key Environment Performance Indicators, International Sematech.
    9. Jasch, C. (2003). "The use of Emvironmental Management Accountion (EMA) for identifying environmental costs." Journal of cleaner Production, Vol. 11, pp. 667-676.
    10. Lambooy, T. (2011). “Corporate social responsibility: sustainable water use.” Journal of Cleaner Production, Vol. 19, pp. 852-866.
    11. Lee, M., Tansel, B. (2012). "Life cycle based analysis of demands and emissions for residential water-using appliances." Journal of Environmental Management, Vol. 101, pp. 75-81.
    12. Miller, C. and Worth, W. (2003). “Environment, health, and safety performance plays a vital role in sustaining the growth of the semiconductor industry.” Journal of Vacuum Science Technology, Vol. 21, Issue 4, pp. 1139-1144.
    13. Pan, Q., Wang, F. and Yang, H. Z. (2011). "Cost-Benefit Analysis and Optimization of Semiconductor Processing Water Recycling Strategy." Applied Mechanics and Materials, Vol. 71, pp. 2772-2777.
    14. Qadir, M., Bahri, A., Sato, T., Al-Karadsheh, E. (2010). “Wastewater production, treatment, and irrigation in Middle East and North Africa.” Irrigation and Drainage System, Vol 24, pp. 37-51.
    15. Tong, L., Liu, X., Liu, X., Yuan, Z., And Zhang, Q. (2013). “Life Cycle Assessment of Water Reuse Systems in an Industrial Park.” Journal of Environmental Management, ELSEVIER, Vol. 129, pp. 471~478.
    16. Wang, B. J., et al. (2005). "Optimization of semiconductor processing water management strategy." Journal of Environmental Informatics, Vol. 5, No. 2, pp. 81-88.
    17. WBCSD. (2005). "Water Facts and Trends." World Business Council on Sustainable Development, Washington.
    18. Yin, R. K. (2008). Case study research: design and methods, SAGE, California.
    19. Yin, X., Jin, Y., Wang, S. (2011). “Application of RO in water treatment of power plant boiler.” Technol. Water Treat, Vol. 37, pp. 126-128.

    中文文獻
    1. 丁志華和戴寶通 (民89) ,「半導體廠超純水簡介」,毫微米通訊,第7卷,第四期,31-39頁。
    2. 台灣自來水公司(民86),「水費及各項服務費收費標準」http://www.water.gov.tw/01about/abo_a_main.asp,2013年9月10日網上資料。
    3. 台灣科學工業園區科學工業同業公會(民93),「科學園區水電輔導管制要點」,http://www.asip.org.tw/userfiles/file/2012/Hsinchu/10201245.pdf,2013年6月19日網上資料。
    4. 江世雄 (民100),半導體廠房水回收系統設計,國立成功大學工程管理碩士在職專班碩士論文。
    5. 行政院環境保護署 (民97),產業環境會計指引,行政院環保署。
    6. 李涵茵(民91),「企業永續經營的環境成本會計基礎」,台灣綜合展望。第6期,65-76頁。
    7. 林昱宏 (民99),製程廢水回收處理系統之經濟效益研究,國立交通大學碩士論文。
    8. 邱泰穎(民89),「水資源利用管理與永續發展」,環境育季刊。第43期,59-67頁。
    9. 南科管理局 (民101),南科學工業園區台南園區暨高雄園區污水下水道容許標準暨收費標準,南科管理局。
    10. 南部科學工業園區(2011),用水計書核備,http://www.stsp.gov.tw/web/WEB/Jsp/Page/cindex.jsp?frontTarget=COMPANY&thisRootID=344,2014年3月19日網上資料。
    11. MBA智庫百科(2008),人力資源成本,http://wiki.mbalib.com/zh-tw/%E4%BA%BA%E5%8A%9B%E8%B5%84%E6%BA%90%E6%88%90%E6%9C%AC,2014年5月30日網上資料。
    12. 南部科學工業園區(2011),用電計書核備,http://www.stsp.gov.tw/web/WEB/Jsp/Page/cindex.jsp?frontTarget=COMPANY&thisRootID=345,2014年2月5日網上資料。
    13. 莊順興等(民99),「台灣產業之永續水資源-新興水源之利用與推動」,永續產業雙月刊,第50期,61-68頁。
    14. 陳仁仲等 (民90),「工業用水效率與回收率的內涵探討」,工業污防治,第77期,122-159頁。
    15. 陳伸賢(民93),台灣地區水資源政策,經濟部水利署。
    16. 彭賢明等(民92),「環境會計制度之建構與效益」,主計月刊。第565期,82-88頁。
    17. 經濟局工業局(民84),半導體製造業污染防治技術,經濟部。
    18. 經濟部水利署(民95),水資源白皮書,經濟部水利署。
    19. 薛仁猷 (民100),半導體公司企業社會責任報告之環境績效指標-以台積電為例,國立成功大學工程管理碩士在職專班碩士論文。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE