| 研究生: |
李奇璋 Li, Chi-Chang |
|---|---|
| 論文名稱: |
具有可摺疊機構之陸空兩用機器人 A land-air robot with foldable mechanism |
| 指導教授: |
侯廷偉
Hou, Ting-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 可摺疊機構 、陸空兩用機器人 、機械設計 |
| 外文關鍵詞: | Foldable mechanism, Land-air robot, Mechanical Design |
| 相關次數: | 點閱:55 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研製一款具有可摺疊機構之陸空兩用機器人(land-air robot),該機器人配置特製輪子與螺旋槳,可以個別驅動進行地面行駛或飛行。機器人本身具有三種折疊機構可以用來改變機體的重心位置與機體大小。綜合以上能力使得機器人能夠越過障礙物或在障礙物下方順利的運行。機器人是使用3D列印製造零件與碳纖維材質零件搭配市售零件組裝而成,重量為1.3kg,機體大小在400 x 300 x 300 mm的範圍。
操作方式為操作者使用RC遙控器配合人機介面監看機器人姿態與現場影像後,對機器人發出最合適的控制指令,達成指定的任務。RC遙控器為傳統遙控飛機的操控器,對於有相關經驗的使用者,可以非常快速的上手本機器人的操作,以此減少訓練時間與降低操作難度。
本研究設計實驗評估機器人的機構設計是否達到預期成效。在飛行方面,機體可以順利起飛降落至指定點。但是因為螺旋槳沒有保護罩,考慮安全,所以沒有進行室內測試。螺旋翼伸縮機構測試正常。地面部份,在地面行駛於光滑路面行走及變形可達成,但崎嶇路面有困難。另外腿部折疊機構只達成約60度摺疊角(設計為90度角)。二項地面測試未達設計目標的原因都是動力不足:地面推進力不足,以及動態支撐變形結構之動力不足。因此整體來說雖然沒有完全達成預期,但是所有功能都有實現,也算是成功的研製了一款陸空兩用機器人。
In this paper, a land-air robot with three foldable mechanisms and with wheels and propellers is proposed. It can be driven individually for ground travel or flight. In addition, the robot has three folding mechanisms that can be used to change the position of the center of gravity and the size of the body. Combining the above capabilities enables the robot to fly over, run across or run under obstacles. The robot is assembled by 3D printed parts, carbon fiber material parts, and commercially available parts. The weight is 1.3kg and the size is within the range of 400 x 300 x 300 mm. The operator uses the transmitter for a radio-controlled airplane with the human-machine interface to monitor the robot's posture. Live images and videos, captured by the camera on the robot, are sent back to the control station. In addition, these images and videos are stored for later usage.
The robot is implanted and tested in the field. It meets the design specification except that (1) it is unable to cross complicated obstacles such as rubbles because of insufficient (motor) power, though the most powerful commodity motor was used (with the constraint weight less than 80g). (2) The leg’s folding angle of its folding mechanism reaches 60 degrees, not 90 degrees because the motor cannot raise the legs back to other angles once it moves over 60 degrees.
[1] 國家災害防災科技中心. "天然災害紀實." https ://den.ncdr.nat.gov.tw/1132/1163/62934/ (accessed April, 2020).
[2] J. Delmerico, A. Giusti, B. Gromov, K Melo,. T. Horvat, C. Cadena, M. Hutter, A. Ijspeert, D. Floreano, L. M. Gambardella, R. Siegwart, and D. Scaramuzza, "The current state and future outlook of rescue robotics," (in English), Journal of Field Robotics, vol. 36, no. 7, pp. 1171-1191, Oct 2019, doi: 10.1002/rob.21887.
[3] A. M. Hoover, E. Steltz, and R. S. Fearing, "RoACH: An autonomous 2.4g crawling hexapod robot," in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22-26 Sept. 2008, pp. 26-33, doi: 10.1109/IROS.2008.4651149.
[4] A. M. Hoover, S. Burden, F. Xiao-Yu, S. S. Sastry, and R. S. Fearing, "Bio-inspired design and dynamic maneuverability of a minimally actuated six-legged robot," in 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 26-29 Sept. 2010, pp. 869-876, doi: 10.1109/BIOROB.2010.5626034.
[5] P. Birkmeyer, K. Peterson, and R. S. Fearing, "DASH: a dynamic 16g hexapedal robot," in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, Missouri, USA, 10-15 Oct. 2009, pp. 2683-2689, doi: 10.1109/IROS.2009.5354561.
[6] A. T. Baisch and R. J. Wood, "Pop-up assembly of a quadrupedal ambulatory micro robot," in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3-7 Nov. 2013, pp. 1518-1524, doi: 10.1109/IROS.2013.6696550.
[7] D. W. Haldane and R. S. Fearing, "Running beyond the bio-inspired regime," in 2015 IEEE International Conference on Robotics and Automation (ICRA), Washington, USA, 26-30 May 2015, pp. 4539-4546, doi: 10.1109/ICRA.2015.7139828.
[8] S. Kim, J. E. Clark, and M. R. Cutkosky, "iSprawl: design and tuning for high-speed autonomous open-loop running," The International Journal of Robotics Research, vol. 25, no. 9, pp. 903-912, 2006/09/01 2006, doi: 10.1177/0278364906069150.
[9] J. M. Morrey, B. Lambrecht, A. D. Horchler, R. E. Ritzmann, and R. D. Quinn, "Highly mobile and robust small quadruped robots," in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, Nevada,USA, 27-31 Oct. 2003, vol. 1, pp. 82-87 vol.1, doi: 10.1109/IROS.2003.1250609.
[10] A. O. Pullin, N. J. Kohut, D. Zarrouk, and R. S. Fearing, "Dynamic turning of 13 cm robot comparing tail and differential drive," in 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA, 14-18 May 2012, pp. 5086-5093, doi: 10.1109/ICRA.2012.6225261.
[11] J. G. Cham, S. A. Bailey, J. E. Clark, R. J. Full, and M. R. Cutkosky, "Fast and Robust: hexapedal robots via shape deposition manufacturing," The International Journal of Robotics Research, vol. 21, no. 10-11, pp. 869-882, 2002, doi: 10.1177/0278364902021010837.
[12] C. Li, C. C. Kessens, R. S. Fearing, and R. J. Full, "Mechanical principles of dynamic terrestrial self-righting using wings," Advanced Robotics, vol. 31, no. 17, pp. 881-900, 2017, doi: 10.1080/01691864.2017.1372213.
[13] G. Jung, C. S. Casarez, S. Jung, R. S. Fearing, and K. Cho, "An integrated jumping-crawling robot using height-adjustable jumping module," in 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16-21 May 2016, pp. 4680-4685, doi: 10.1109/ICRA.2016.7487668.
[14] C. S. Casarez and R. S. Fearing, "Dynamic terrestrial self-righting with a minimal tail," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 24-28 Sept. 2017, pp. 314-321, doi: 10.1109/IROS.2017.8202174.
[15] J.-E. Lee, G.-P. Jung, and K.-J. Cho, "Bio-inspired design of a double-sided crawling robot," in Biomimetic and Biohybrid Systems, Cham, M. Mangan, M. Cutkosky, A. Mura, P. F. M. J. Verschure, T. Prescott, and N. Lepora, Eds., 2017: Springer International Publishing, pp. 562-566.
[16] T. Kim, C. Kim, S. Kim, and G. Jung, "MutBug: a lightweight and compact crawling robot that can run on both sides," IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1409-1415, 2019, doi: 10.1109/LRA.2019.2895896.
[17] G. Jung et al., "JumpRoACH: a trajectory-adjustable Integrated jumping–crawling robot," IEEE/ASME Transactions on Mechatronics, vol. 24, no. 3, pp. 947-958, 2019, doi: 10.1109/TMECH.2019.2907743.
[18] D. Zarrouk, A. Pullin, N. Kohut, and R. S. Fearing, "STAR, a sprawl tuned autonomous robot," in 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6-10 May 2013, pp. 20-25, doi: 10.1109/ICRA.2013.6630551.
[19] D. Zarrouk and L. Yehezkel, "Rising STAR: a highly reconfigurable sprawl tuned robot," IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1888-1895, 2018, doi: 10.1109/LRA.2018.2805165.
[20] H. Komsuoḡlu, K. Sohn, R. J. Full, and D. E. Koditschek, "A physical model for dynamical arthropod running on level ground," in Experimental Robotics, Berlin, Heidelberg, O. Khatib, V. Kumar, and G. J. Pappas, Eds., 2009: Springer Berlin Heidelberg, pp. 303-317.
[21] M. Zhao, T. Anzai, F. Shi, X. Chen, K. Okada, and M. Inaba, "Design, modeling, and control of an aerial robot DRAGON: a dual-rotor-embedded multilink robot with the ability of multi-degree-of-freedom aerial transformation," IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1176-1183, 2018, doi: 10.1109/LRA.2018.2793344.
[22] M. Zhao, K. Kawasaki, X. Chen, S. Noda, K. Okada, and M. Inaba, "Whole-body aerial manipulation by transformable multirotor with two-dimensional multilinks," in 2017 IEEE International Conference on Robotics and Automation (ICRA), Marina Bay Sands Singapore, Singapore, 29 May-3 June 2017, pp. 5175-5182, doi: 10.1109/ICRA.2017.7989606.
[23] D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza, "The foldable drone: a morphing quadrotor that can squeeze and fly," IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 209-216, 2019, doi: 10.1109/LRA.2018.2885575.
[24] V. Riviere, A. Manecy, and S. Viollet, "Agile robotic fliers: a morphing-based approach," Soft Robotics, vol. 5, no. 5, pp. 541-553, 2018, doi: 10.1089/soro.2017.0120.
[25] Y. Wu, X. Du, R. Duivenvoorden, and J. Kelly, "The phoenix drone: an open-source dual-rotor tail-sitter platform for research and education," in 2019 International Conference on Robotics and Automation (ICRA), Montreal Convention Centre, Canada, Ed., 20-24 May 2019, pp. 5330-5336, doi: 10.1109/ICRA.2019.8794433.
[26] C. Premachandra, M. Otsuka, R. Gohara, T. Ninomiya, and K. Kato, "A study on development of a hybrid aerial / terrestrial robot system for avoiding ground obstacles by flight," IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 1, pp. 327-336, 2019, doi: 10.1109/JAS.2018.7511258.
[27] N. Meiri and D. Zarrouk, "Flying STAR, a hybrid crawling and flying sprawl tuned robot," in 2019 International Conference on Robotics and Automation (ICRA), Montreal Convention Centre, Montreal, Canada, 20-24 May 2019, pp. 5302-5308, doi: 10.1109/ICRA.2019.8794260.
[28] M. Zhang, B. Chai, L. Cheng, Z. Sun, G. Yao, and L. Zhou, "Multi-movement spherical robot design and Implementation," in 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5-8 Aug. 2018, pp. 1464-1468, doi: 10.1109/ICMA.2018.8484427.
[29] C. J. Salaan, K. Tadakuma, Y. Okada, Y. Sakai, K. Ohno, and S. Tadokoro, "Development and experimental validation of aerial vehicle with passive rotating shell on each rotor," IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2568-2575, 2019, doi: 10.1109/LRA.2019.2894903.
[30] A. O. A. R. Zufferey, C. Raposo, S. F. Armanini, A. Farinha, R. Siddall, I. Berasaluce, H. Zhu, M. Kovac, "SailMAV: design and Implementation of a novel multi-modal flying sailing robot," IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2894-2901, 2019, doi: 10.1109/LRA.2019.2921507.
[31] M. M. Maia, D. A. Mercado, and F. J. Diez, "Design and implementation of multirotor aerial-underwater vehicles with experimental results," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 24-28 Sept. 2017, pp. 961-966, doi: 10.1109/IROS.2017.8202261.
[32] SAVOX. "Savox - servo - SB-2292SG - digital - high voltage - brushless motor - steel gear." https://www.savox-servo.com/Servos-c-1338/Brushless-Motor-c-1341/Savox-Servo-SB-2292SG-Digital-High-Voltage-Brushless-Motor-Steel-Gear/ (accessed August, 2020).