簡易檢索 / 詳目顯示

研究生: 吳宏一
Wu, Hong-Yi
論文名稱: 熱處理對高鉻軸承鋼中之碳化物帶影響研究
Effect of Heat Treatment on Carbide Banding in High-chromium Bearing Steel
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 154
中文關鍵詞: SUJ2軸承鋼碳化物帶熱處理球化退火冷卻速率
外文關鍵詞: SUJ2 bearing steel, Carbide banding, Spheroidization treatment, Cooling rate
相關次數: 點閱:158下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化物帶為現前高碳鉻軸承鋼中微結構最為常見的問題,其會使鋼材的耐磨耗性與疲勞壽命等各項機械性質的下降,儘管已有許多文獻指出其主要是來自鋼液凝固的微觀偏析組織經熱軋延拉長成的富質合金帶所引發,然而其詳細形成機理與熱處理對其微觀偏析結構的改善成效卻仍然尚未明瞭。
    本研究針對SUJ2鋼的熱軋棒材經球化退火後之碳化物帶,藉由SEM、EPMA與EBSD等分析儀器對其球化前後試樣行金相與成分等分析,從中理解其形成機理,同時探討沃斯田鐵化後不同冷卻速率(0.08、2.28與80.7℃/sec)之熱處理對其碳化物帶改善之成效。
    實驗結果顯示,鋼中碳化物帶為由鉻微觀偏析帶於鋼材沃斯田鐵化後的冷卻相變與其球化退火過程引發碳成分分布波動所導致,而提高沃斯田鐵化後的冷卻速率可有效改善其後之冷卻相變時的碳成分分布波動,並在約80.7℃/sec的冷卻速率下時,完全抑制碳原子擴散回鉻微觀偏析帶,進而避免碳化物的帶狀聚集。

    Carbide banding is one problem of microstructure in high-chromium steel, which has a negative influence on mechanical properties, such as wear resistance and fatigue life etc. Although a lot of works pointed out the formation of the bands due to microsegregation during solidification after hot rolling, however, the formation mechanism and the effect of heat treatment on the structure of microsegregation were still not clear. In this study, the formation mechanism of carbide band in the SUJ2 steel of hot rolling bar after spheroidization annealing was investigated, and the metallography and chemical composition were analyzed using SEM, EPMA, and EBSD before and after spheroidization treatment. At the same time, this study also investigated the effect of the cooling rate (0.08, 2.28 and 80.7℃/sec) on the formation of carbide banding after austenitizing.
    The results show the carbide banding resulted from microsegregation band of chromium which is due to the inhomogeneous distribution of carbon content during phase transformation after austenitizing and spheroidization treatment. Furthermore, raise cooling rate after austenitizing can improve the inhomogeneous distribution of carbon content during the cooling process, and restrain the diffusion of carbon back to the microsegregation band completely at the cooling rate about equal to 80.7℃/sec. Increasing the cooling rate is able to avoid the formation of carbide banding.

    中文摘要 II Extended Abstract III 誌謝 XIII 目錄 XVI 表目錄 XIX 圖目錄 XX 第一章 前言 1 第二章 文獻回顧 4 2.1 SUJ2鋼的合金設計 4 2.2微觀偏析理論回顧 13 2.3 軋鋼帶狀組織 25 2.3.1 亞共析鋼帶狀組織 25 2.3.2 過共析鋼帶狀組織 37 第三章 實驗方法 43 3.1 實驗材料 43 3.1.1 試片取樣 43 3.1.2 試片製備 45 3.2 連鑄原材之分析 48 3.2.1 熱機程序與試片命名 48 3.2.2 球化退火前之分析 51 3.2.3 球化退火後之分析 52 3.3 冷卻速率對碳化物帶之影響 56 3.3.1 熱處理程序設計與試片命名 56 3.3.2 冷卻速率之量測 59 3.3.3 球化退火前之分析 61 3.3.4 球化退火後之分析 62 第四章 實驗結果 64 4.1 連鑄原材之分析 64 4.1.1 球化退火前之分析 64 4.1.2 球化退火後之分析 68 4.2 冷卻速率對碳化物帶之影響 87 4.2.1 冷卻速率之量測 87 4.2.2 球化退火前之分析 89 4.2.3球化退火後之分析 99 第五章 討論 109 5.1 碳化物帶的形成機理討論 109 5.2 熱處理對碳化物帶的改善效果 120 第六章 結論 147 參考文獻 148

    [1] G. F. Vander Voort, Metallographic Preparation of Tool Steels.2015,Buehler, 5, 1-4.

    [2] G. F. Vander Voort, ASM Handbook Volume 9: Metallography and Microstructures - Color Etching.2004 , ASM International, USA:Metals Park, Ohio.

    [3] W. Bochnowski, The influence of the arc plasma treatment on the structure and microhardness 100Cr6 bearing steel. 2010, Archives of Foundry Engineering, 10, 19-22.

    [4] D. R. Poirier and G. H. Geiger, Transport Phenomena in Materials Processing(1st ed.). 1998, Wiley-TMS, USA: Warrendale,Pennsylvania.

    [5] R. Abbaschian, L. Abbaschian, and R. E. Reed-Hill, Physical Metallurgy Principles(4th ed.). 2008, Cengage Learning, USA: Boston.

    [6] I. Minkoff, Solidification and Cast Structure(1st ed.). 1986, John Wiley & Sons, USA: New York.

    [7] S. J. Lee, D. K. Matlock,and C. J. Van Tyne, An Empirical Model for Carbon Diffusion in Austenite Incorporating Alloying Element Effects. 2011, ISIJ International, 51, 1903-1911.

    [8] C. K. Ande and M. H. F. Sluiter, First-principles prediction of partitioning of alloying elements between cementite and ferrite.2010, Acta Materialia, 58, 6276-6281.

    [9] E. C. Bain, Functions of The Alloying Elements In Steel.1939, American Society for Metals, USA: Metals Park, Ohio.

    [10] C. R. Brooks, Heat Treatment of Ferrous Alloys.1979, Mcgraw-Hill, USA: Washington

    [11] W. F. Smith , Structure and Properties of Engineering Alloys(2nd ed.).1993, McGraw-Hill, USA: New York.

    [12] W. D. Callister Jr and D. G. Rethwisch, Materials Science and Engineering(8th ed.). 2010, John Wiley & Sons, USA: New York.

    [13] J. M. Beswick, The Effect of Chromium in High Carbon Bearing Steels. 1987, Metallurgical Transactions A-Physical Metallurgy and Materials Science, 18, 1897-1906.

    [14] K. E. Thelning, Steels and its Heat Treatment(2nd ed).1984, Butterworth & Co. and K-E Thelning, UK: London.

    [15] D. A. Porter, K. E. Easterling ,and M.Y. Sherif, Phase
    Transformations in Metals and Alloys(3rd ed).2009, CRC Press, USA: London.

    [16] A. Nagode, A. Resnik, R. Vertnik, M. Bizjak, B. Kosec, M. Gojic, G. Kosec, B. Sarler, and B. Zorc, The development of a banded microstructure in S355J2 steel bar. 2017, Kovove Mater, 55, 51-56.

    [17] F.A. Khalid, M. Farooque, A. ul Haq, and A.Q. Khan, Role of ferrite/pearlite banded structure and segregation on mechanical properties of microalloyed hot rolled steel.1999,Materials Science and Technology, 15, 1209-1215.

    [18] S. Deldar, H. Mirzadeh, and M. H. Parsa, Prevention of surface hot shortness, development of banded structure, and mechanical properties of hot rolled Cu-bearing steel.2016, Engineering Failure Analysis, 68, 132-137.

    [19] H. Sakasegawa and H. Tanigawa, Microsegregation in a F82H plate.2013, Journal of Nuclear Materials, 442, S18-S22. 
    [20] A. Salimi, H. M. Zadeh, M. R. Toroghinejad, D. Asefi, and A. Ansaripour, Influence of Sample Direction on The Impact Tougness of The API-X42 Microalloyed Steel with a Banded Structure.2013, Materials and Technology, 47, 385-389.

    [21] S. E. Offerman, N. H. van Dijk, M. Th. Rekveldt, J. Sietsma, and S. van der Zwaag, Ferrite/pearlite band formation in hot rolled medium carbon steel.2002, Materials Science and Technology, 18, 297-303.

    [22] F. G. Caballero, A. Garcia-Junceda, C. Capdevila, and C. G. de Andres, Evolution of microstructural banding during the manufacturing process of dual phase steels.2006, Materials Transactions, 47, 2269-2276.

    [23] J. Sun, T. Jiang, H. J. Liu, S. W. Guo, and Y. N. Liu, Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying.2016, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 47A, 5985-5993.

    [24] A. S. Bor, Effect of Pearlite Banding on Mechanical Properties of Hot-rolled Steel Plates.1991, ISIJ International, 31, 1445-1446.

    [25] X. C. Zhuang, S. M. Ma, and Z. Zhao, Effect of particle size, fraction and carbide banding on deformation and damage behavior of ferrite–cementite steel under tensile/shear loads.2017, Modelling and Simulation in Materials Science and Engineering, 25, 1-30.

    [26] L. Shi, Z. S. Yan, Y. C. Liu, X. Yang, Z. X. Qiao, B. Q. Ning, and H. J. Li, Development of ferrite/bainite bands and study of bainite transformation retardation in HSLA steel during continuous cooling.2014, Metals and Materials International, 20, 19-25.

    [27] L. Morales-Rivas, H. Roelofs, S. Hasler, C. Garcia-Mateo, and F. G. Caballero, Complex microstructural banding of continuously cooled carbide-free bainitic steels.2014, Materials Science Forum, 783-786, 980-985.

    [28] C. Hays and R.P. Stemmler, Banding of MAR-Aging Steel.2000, Journal of Materials Engineering and Performance, 9, 147-152.

    [29] J. A. Eckert, P. R. Howell, and S. W. Thompson, Banding and the nature of large, irregular pearlite nodules in a hot-rolled low-alloy plate steel: a second report.1993, Journal of Materials Science, 28, 4412-4420.

    [30] L. C. Erickson, S. Hogmark, Analysis of banded hot rolling rolls.1993, Wear, 165, 231-235.

    [31] J. C. Silva and F. M. B. Fernandes, Characterisation of Segregation Bands Distribution in Hot Rolled Alloyed Steels.2002, Advanced Materials Forum I, 230-2, 327-330.

    [32] J. C. Pang, S. X. Li, Z. G. Wang, and Z. F. Zhang, Relations between fatigue strength and other mechanical properties of metallic materials.2014, Fatigue & Fracture of Engineering Materials & Structures, 37, 958-976.

    [33] Boardman, ASM Handbook Volume 1: Properties and Selection:Irons, Steels, and High Performance Alloys- Fatigue Resistance of Steels.1990 , ASM International, USA: Metals Park, Ohio.

    [34] M. Randelius, Influence of microstructure on fatigue and ductility properties of tool steels.2008, Royal Institute of Technology Department of Materials Science and Engineering, Licentiate Thesis.

    [35] P. F. F. Walker, A. Kerrigan, M. Green, N. Cardinal, J. Connell, and P. E. J. Rivera-Dı ´az-del-Castillo, Modelling of Micro-Segregation in a 1C-1.5Cr Type Bearing Steel.2015, Bearing Steel Technologies: Advances in Steel Technologies for Rolling Bearings, 10, 54–80.

    [36] C. Krsihna, K. T. Tharian, K. V. A. Chakravarthi, A. K. Jha, and B. Pant, Heat Treatment and Thermo-Mechanical Treatment to Modify Carbide Banding in AISI 440C Steel : A Case Study.2016, Metallography Microsturcture and Analysis, 5, 108-115.

    [37] Erişir, O. G. Bilir, and A. E. Gezmişoğlu, A study of carbide dissolution in bearing steels using computational thermodynamics and kinetics.2017, IOP Conference Series: Materials Science and Engineering, 179, 1-6.

    [38] Z. X. Li, C. S. Li, J. Zhang, B. Qiao, and Z. Z. Li, Effects of Annealing on Carbides Size and Distribution and Cold Formability of 1.0C-1.5Cr Bearing Steel.2015, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 46A, 3220-3231.

    [39] L. Hellner and T. O. Norrman, Banding in Alloyed Steels.1968, Jernkontorets Annaler, 152, 269-286.

    [40] J. D. Verhoeven, The role of the divorced eutectoid transformation in the spheroidization of 52100 steel.2000, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 31, 2431-2438.

    [41] J. D. Verhoeven, The Mystery of Damascus Blades.2001, Scientific American, 284, 74-79.

    [42] J. D. Verhoeven, A review of microsegregation induced banding phenomena in steels.2000, Journal of Materials Engineering and Performance, 9, 286-296.

    [43] J. D. Verhoeven, D. T. Peterson, What Is a Damascus Steel?.1992, Materials Characterization, 29, 335-341.

    [44] J. D. Verhoeven and A. H. Pendray, Experiments To Reproduce the Pattern of Damascus Steel Blades.1992, Materials Characterization, 29, 195-212.

    [45] J. D. Verhoeven and A. H. Pendray, Studies of Damascus Steel Blades: Part I-Experiments on Reconstructed Blades.1993, Materials Characterization, 30, 175-186.

    [46] J. D. Verhoeven, A. H. Pendray, and P. M. Berge, Studies of Damascus Steel Blades: Part II-Destruction and Reformation of the Pattern.1993, Materials Characterization, 30, 187-200.

    [47] J. D. Verhoeven, A. H. Pendray, and E. D. Gibson, Wootz Damascus Steel Blades.1996, Materials Characterization, 37, 9-22.

    [48] J. D. Verhoeven, A. H. Pendray, and W. E. Dauksch, The Key Role of Impurities in Ancient Damascus Steel Blades.1998, JOM-Journal of The Minerals Metals & Materials Society, 50, 58-64.

    [49] J. D. Verhoeven and A. H. Pendray, Origin of the Damask pattern in Damascus steel blades.2001, Materials Characterization, 47, 423-424

    [50] J. D. Verhoeven, Genuine Damascus steel: a type of banded microstructure in hypereutectoid steels.2002, Steel Research, 73, 356-365.

    [51] J. D. Verhoeven, A. H. Pendray, and W. E. Dauksch, The continuing study of Damascus steel: Bars from the Alwar Armory.2004, JOM, 56, 17-20.

    [52] R. N. Penha, J. Vatavuk, A. A. Couto, S. A. D. Pereira, S. A. de Sousa, and L. D. Canale, Effect of chemical banding on the local hardenability in AISI 4340 steel bar.2015, Engineering Failure Analysis, 53, 59-68.

    [53] T. F. Majka, D. K. Matlock, and G. Krauss, Development of Microstructural Banding in Low-Alloy Steel with Simulated Mn Segregation.2002, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 33, 1627-1637.

    無法下載圖示 校內:2021-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE