| 研究生: |
潘信文 Pan, Hsin-Wen |
|---|---|
| 論文名稱: |
以無電鍍法製備鈀/砷化鋁鎵與鈀/氮化鎵蕭特基二極體及其氫氣感測之研究 Study on Fabrication and Hydrogen Detection of Pd/Al0.3Ga0.7As and Pd/GaN Schottky Diodes by Electroless Plating |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 氮化鎵 、砷化鋁鎵 、無電鍍 、氫氣感測 、蕭特基二極體 |
| 外文關鍵詞: | Schottky diode, hydrogen detection, Al0.3Ga0.7As GaN, electroless plating |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以無電鍍法分別在砷化鋁鎵與氮化鎵兩種摻雜磊晶膜之基材上沈積鈀膜,以製備鈀蕭特基二極體作為氫氣感測器。文中探討此兩種元件之界面品質、電性整流特性、氫氣檢測表現與氫氣吸附機制之分析,並與傳統蒸鍍法之元件來作比較。
由無電鍍鈀/砷化鋁鎵蕭特基二極體之實驗結果顯示,以無電鍍法製備之鈀-砷化鋁鎵蕭特基界面並無熱破壞之現象。在I-V電性上,此二極體擁有高啟動電壓與低反向漏電流,其電性整流特性優於蒸鍍元件。以熱游離模式分析,其蕭特基能障值可高達 998 meV,且理想常數值接近1。在氫氣感測方面,此元件於343 K下,偵檢極限達到100 ppm以下,偵檢範圍為100 ppm ~ 1 %,相對飽和靈敏度最高可達3.61,且其響應迅速,響應時間與回復時間皆在1分鐘內,但受限於砷化鋁鎵基材之低能隙值,故僅適用於303 ~ 343 K之操作溫度範圍。
在無電鍍鈀/氮化鎵蕭特基二極體之研究中發現,此元件之電性整流特性相較於蒸鍍元件更佳。在氫氣感測方面,303 K時,偵檢極限達到50 ppm以下,而當氫氣濃度為1 %時,其相對飽和靈敏度更可高達2.9105。此元件因氮化鎵基材之高能隙值,故感測溫度範圍較廣,可適用於303 ~ 523 K間。
在氫氣暫態響應方面,提高操作溫度與氫氣濃度可增進響應速率,其響應時間僅需30秒且回復時間僅需10秒。但在423 K以上,由於鈀膜表面有OH與H2O之生成反應,而抑制其響應速率,甚至使I-t圖中出現兩段暫態響應(two-stage transient response)之現象,實驗中並證實,此現象係因無電鍍鈀膜不緻密而使氧氣吸附於裸露之氮化鎵基材所導致。
In this study, electroless plating (EP) method was employed to deposit palladium film on doped epitaxial Al0.3Ga0.7As and GaN
films for fabrication of palladium Schottky diodes as hydrogen
sensors. The perfectness of Schottky interface, I-V rectifying
properties, and hydrogen sensing performances were investigated.
The hydrogen adsorption mechanisms on the EP diodes were also
studied. Moreover, the sensing performances of EP were compared
with those of TE.
From the experimental results of EP Pd/Al0.3Ga0.7As Schottky
diode, it reveals that the Pd-Al0.3Ga0.7As Schottky interfacial
quality is quite good with less thermal damage. This diode exhibits the better I-V rectifying properties with higher turn-on voltage and lower reverse leakage currents than the TE one. Based on the thermionic emission model, the Schottky barrier height (SBH) of the EP diode is 998 meV and its ideality factor is closed to unity. For hydrogen-sensing performances, the EP diode exhibits the lowest detection limit which is less than 100 ppm H2/air, and detection range is from 100 pm to 1 % H2/air. In addition, the relative saturation sensitivity even reaches 3.61 at 1% H2/air. For transient detections, the response rate is extremely fast and it takes within 1 minute for response and recovery. However, the operating temperature regime is over 303 ~ 343 K limited to low band gap of Al0.3Ga0.7As substrate.
From the experimental results of EP Pd/GaN Schottky diode, it
reveals that the studied EP diode exhibits better I-V rectifying
properties than TE one. At 303 K, the EP diode exhibits the lowest detection limit which is less than 50 ppm H2/air, and at hydrogen concentration of 1 % H2/air, the relative saturation sensitivity reaches 2.9105. However, due to the high band gap of GaN substrate, the device can be operated over a wide temperature region of 303 ~ 523 K.
For hydrogen transient detections by the EP Pd/GaN diode, the
response rate can be promoted by increasing either hydrogen
concentration or operating temperature. It takes only 30 seconds
for response and 10 seconds for recovery. However, at above 423 K, the response is retarded due to the formation of OH and H2O
species. More interesting, a two-stage transient response is
observed at 423 K, which is verified due to the oxygen adsorption of the are GaN surface via porous Pd gate.
1.I. Lundstrom, “Approaches and mechanisms to solid state based
sensing,” Sens. Actuators. B-Chem., 35-36, pp. 11-19, 1996.
2.C. C. Liu, P. J. Hesketh, and G. W. Hunter, “Chemical
microsensors,” Interface, 13(2), pp. 22-27, 2004.
3.A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld, and K. S. Goto, “Solid-State Gas Sensors: A Review,” J. Electrochem. Soc., 139, pp. 3690-3704, 1992.
4.E. M. Logothetis and W. J. Kaiser, “TiO2 film oxygen sensors
made by chemical vapour deposition from organometallics,” Sens.
Actuators, 4, pp. 333-340, 1983.
5.J. Gerblinger and H. Meixner, “Electrical conductivity of
sputtered films of strontium titanate,” J. Appl. Phys., 67, pp.
7453-7459, 1990.
6.U. Lampe, J. Gerblinger, and H. Meixner, “Comparison of
transient response of exhaust-gas sensors based on thin films of
selected metal oxides,” Sens. Actuators. B-Chem., 7(1-3), pp. 787-791, 1992.
7.H. Meixner, U. Lampe, J. Gerblinger, and M. Fleischer, “Chemosensors for motor management system of the future,” J.
Anal. Chem., 348, pp. 536-541, 1994.
8.陳一誠, “金屬氧化物半導體型氣體感測器,” 材料與社會, 68, pp. 62-66, 1992.
9.曾明漢, “觸媒燃燒型氣體感測器,” 材料與社會, 68, pp. 57-61,
1992.
10.黃炳照, “固態電解質電化學氣體感測器,” Chemistry (The Chinese Chem. Soc., Taipei), 59(2), pp. 207-217, 2001.
11.C. Caliendo, A. D’Amico, P. Verardi, and E. Verona, 1988 IEEE Ultrasonics Symposium Proc., pp. 549-554, 1988.
12.A. D’Amico, A. Palma, and E. Verona, “Palladium-surface
acoustic wave interaction for hydrogen detection,” Appl. Phys
Lett., 41(3), pp. 300-301,1982.
13.A. D’Amico, A. Palma, and E. Verona, “Surface acoustic wave
hydrogen sensor,” Sens. Acuators, 3, pp. 31-39, 1982.
14.A. D’Amico, A. Palma, and E. Verona, “Hydrogen Sensor Using a Palladium Coated Surface Acoustic Wave Delay-Line,” 1982 IEEE
Ultrasonic Symposium Proc., pp. 308-311, 1982.
15.A. D’Amico, M. Gentili, P. Verardi, and E. Verona, Proc. Of the 2nd International Meeting on Chemical Sensors, p. 743, 1985.
16.A. Mandelis and C. Christofides, “Physics, chemistry and
technology of solid state gas sensor devices,” New York: John Wily & Sons, 1993.
17.M. S. Shivaraman, I. Lundstrom, C. Svensson, and H. Hammarsten,“Hydrogen sensitivity of palladium-thin oxide-silicon Schottky barriers,” Electon. Letter., 12, pp. 483-484, 1976.
18.L. L. Tongson, B. E. Knox, T. E. Sullivan, and S. J. Fonash,
“Comparative study of chemical and polarization characteristics of Pd/Si and Pd/SiOx/Si Schottky-barrier-type devices,” J. Appl. Phys., 50(3), pp. 1535-1537, 1979.
19.P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si. MIS Schottky barrier diode hydrogen detector,” IEEE Trans Electron Device, ED-28, pp. 1003-1009, 1981.
20.Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Comparative hydrogen sensing performances of Pd- and Pt-InGaP metal-oxide-semiconductor Schottky diodes,” J. Vac. Sci. Technol. B, 21(6), pp. 2471-2477, 2003.
21.C. C. Chen, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-
Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuator B-Chem., 99(2-3), pp. 425-430, 2004.
22.C. K. Kim, J. H. Lee, S. M. Choi, I. H. Noh, H. R. Kim, N. I.
Cho, C. Hong, and G. E. Jang, “Pd- and Pt-SiC Schottky diodes for detection of H2 and CH4 at high temperature,” Sens. Actuator B-Chem., 77(1-2), pp. 455-462, 2001.
23.B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sens. Actuator B-Chem., 56(1-2), pp. 164-168, 1999.
24.J. Kim, B. P. Gila, G. Y. Chung, C. R. Abernathy, and S. J.
Pearton, “Reversible barrier height changes in hydrogen-sensitive Pd/GaN and Pt/GaN diodes,” J. Appl. Phys., 82(5), pp. 739-741, 2003.
25.L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones,“A new hydrogen sensor based on a Pt/GaAs Schottky diode,” J. Electrochem. Soc., 138, pp. 159-162, 1991.
26.L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Hydrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuator B-Chem., 4(3-4), pp. 551-558, 1991.
27.H. Nienhaus, H. S. Bergh, B. Gergen, and A. Majumdar, W. H.
Weinberg, and E. V. McFarland, “Selective H atom sensors using
ultrathin Ag-Si Schottky diodes,” Appl. Phys Lett., 74(26), pp.
4046-4048,1999.
28.J. Liu, G. R. Oritz, Y. Zhang, H. Bakhru, and J. W. Corbett,
“Effects of hydrogen on the barrier height of a titanium Schottky diode on p-type silicon,” Phys. Rev. B, 44(6), pp. 8918-8922, 1991.
29.S. X. Jin, L. P. Wang, M. H. Yuan, J. J. Chen, Y. Q. Jia, and G. G. Jia, “Effects of hydrogen on the Schottky-barrier of Ti/n-GaAs diodes,” J. Appl. Phys., 71(1), pp. 536-538, 1992.
30.H. Nienhaus, H. S. Bergh, B. Gergen, A. Majumdar, W. H. Weinberg, and E. V. McFarland, “Ultrathin Cu films on Si(111):
Schottky barrier formation and sensor applications,” J. Vac. Sci. Technol. A, 17(4), pp. 1683-1687, 1999.
31.M. C. Steele and B. A. Maciver, “Palladium/cadmium-sulfide
Schottky diodes for hydrogen detection,” Appl. Phys Lett., 47(11), pp. 687-688,1976.32.K Ito, “Hydrogen-sensitive Schottky-barrier diodes,” Surf. Sci., 86, pp. 345-352, 1979.
33.T. L. Potrat, B. Lalevic, B. Kuliyev, M. Yousuf, and M. Chen, “MOS and Schottky diode gas sensors using transition metal
electrodes,” J. Electron, Mater., 12(1), pp. 181-214, 1983.
34.H. Y. Nie, “Formation and decomposition of hydrogen-related
electron traps at hydrogenated Pd/GaAs (n-type) Schottky
interfaces,” J. Appl. Phys., 87(9), pp. 4327-4331, 2000.
35.K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “ A hydrogen sensing Pd/InGaP metal-
semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol., 18(7), pp. 615-619, 2003.
36.K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, C. T. Lu, C. C. Cheng, and W. C. Liu, “Characteristics of Pd/InGaP Schottky diodes hydrogen sensors,” IEEE Sens. J., 4(1), pp. 72-79, 2004.
37.Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Chen, and W. C. Liu, “ Investigation of hydrogen-sensing properties of Pd/AlGaAs-based Schottky diodes,” IEEE Trans. Electron Devices, 50(12), pp. 2532-2539, 2003.
38.H. Hasegawa, “Fermi Level Pinning and Schottky Barrier Height Control at Metal-Semiconductor Interfaces of InP and Related Materials,” Jpn. J. Appl. Phys., Part1, 38, pp. 1098-1102, 1999.
39.H. Hasegawa and H. Ohno, “Unified disorder induced gap state
model for insulator-semiconductor and metal-semiconductor
interfaces,” J. Vac. Sci. Technol. B, 4(4), pp. 1130-1138, 1986.
40.W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su and, I. Linda, J. Vac. Sci. Technol., 16, pp. 1422-1433, 1979.
41.N. J. Wu, T. Hashizume, and H. Hasegawa, “Formation of oxide-free nearly ideal Pt/GaAs Schottky barriers by novel in-situ photopluse-asisted electrochemical process,” Jpn. J. Appl. Phys., Part 1, 33(1B), pp. 936-941, 1994.
42.T. Hashizume, G. Schweeger, N. J. Wu, and H. Hasegawa, “Novel in-situ electrochemical technology for formation of oxide-free and defect-free Schottky contact to GaAs and related low-dimensional structures,” J. Vac. Sci. Technol. B, 12(4), pp. 2660-2666, 1994.
43.N. J. Wu, T. Hashizume, H. Hasegawa, and Y. Amemiya, “Schottky contacts on n-InP with high barriers and reduced Fermi-level pinning by a in-situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, 34(2B), pp. 1162-1167, 1995.
44.S. Uno, T. Hashizume, S. Kasai, N. J. Wu, and H. Hasegawa,
“0.86 eV platinum Schottky barrier on indium phosphide by in situ electrochemical process and its application to MESFETs,” Jpn. J. Appl. Phys., Part 1, 35(2B), pp. 1258-1263, 1996.
45.H. Hasegawa, T. Sato, and T. Hashizume, “Evolution mechanism of nearly pinning-free platinum/n-type indium phosphide interface with a high Schottky barrier height by in situ electrochemical process,” J. Vac. Sci. Technol. B, 15(4), pp. 1227-1235, 1997.
46.T. Sato, S. Uno, T. Hashizume, and H. Hasegawa, “Title: Large Schottky barrier heights on indium phosphide-based materials realized by in-situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, 36(3B), pp. 1811-1817, 1997.
47.T. Sato, C. Kaneshiro, and H. Hasegawa, “The strong correlation between interface microstructure and barrier height in Pt/n-InP Schottky contacts formed by an in situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, 38(2B), pp. 1103-1106, 1999.
48.H. I. Chen, Y. I Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuator B-Chem., 85(1-2), pp. 10-18, 2002.
49.H. I. Chen and Y. I Chou, “A Comparative Study on Hydrogen
Sensing Performances between Electroless Plated and Thermal
Evaporated Pd/InP Schottky Diodes,” Semicond. Sci. Technol., 18, pp. 104-110, 2003.
50.周彥伊, “以無電法製備蕭特基二極體氫氣感測器之研究,” 成功大學化工系碩士論文 (2001)。
51.H. I. Chen, Y. I Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd/InP Schottky diode,” Sens. Actuators B-Chem., 92, pp. 6-16, 2003.
52.熊健剛, “無電鍍鈀/砷化鎵式氫氣感測器之製備及氫氣感測研究,” 成功大學化工系碩士論文 (2003)。
53.F. Winquist, B. Danielsson, and I. Lundstrom, “Hydrogen and
ammonia gas-sensitive semiconductor structures in bioanalysis,” in D. L. Wise (ed.), Applied Biosensors, Butterworths, Boston, MA, Ch. 10, pp. 291-319, 1989.
54.A. Arbab, A. Spetz, Q. ul Wahab, M. Willander, and I. Lundstrom,“Chemical sensors for high temperatures based on silicon carbide,” Sensors Mater., 4, pp. 173-185, 1993.
55.A. L. Spetz. A. Baranzahi, P. Tobias, and I. Lundstrom, “High Temperature Sensors Based on Metal-Insulator-Silicon Carbide Devices,” Phys. Stat. Sol. (a) 162, pp. 493-511, 1997.
56.P. Tobias, A. Baranzahi, A. L. Spetz, O. Kordina, E. Janzen, and I. Lundstrom, “Fast Chemical Sensing with Metal-Insulator Silicon Carbide Structures,” IEEE Electron Device Lett., 18, pp. 287-289, 1997.
57.B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sens. Actuators. B Chem., 56(1-2), pp. 164-168, 1999.
58.R. F. Davis, “Thin Films and Devices of Diamond, Silicon
Carbide and Gallium Nitride,” Physica B, 185, pp. 1-4, 1993.
59.S. Yoshida and J. Suzuki, “Reliability of metal semiconductor field-effect transistor using GaN at high temperature,” J. Appl. Phys., 84, pp. 2940-2942, 1998.
60.S. Yoshida and J. Suzuki, “High-temperature reliability of GaN metal semiconductor field-effect transistor and bipolar junction transistor,” J. Appl. Phys., 85, pp. 7931-7934, 1999.
61.Q. Z. Liu, L. S. Yu, S. S. Lau, L. M. Redwing N. R. Perkings,
and Y. F. Kuech, “Thermally stable PtSi Schottky contact on n-GaN,” Appl. Phys. Lett., 70, pp. 1275-1277, 1997.
62.M. A. Khan, M. S. Shur, J. N. Kuznia, Q. Chen, J. Burm, and W. Schaff, “ Temperature activated conductance in GaN/AlGaN
heterostructure field effect transistors operating at temperatures up to 300 °C,” Appl. Phys. Lett., 66, pp. 1083- 1085, 1995.
63.O. Aktas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev, and H.
Morkoc, “High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors,” Appl. Phys. Lett., 69, pp. 3872-3874, 1996.
64.S. C. Binari, K. Doverspike, G. Kelner, H. B. Dietrich, and A. E. Wickenden, “Fabrication and characterisation of GaN FETs,” Solid-State Electron. 41, pp. 177- 182, 1997.
65.J. Schalwig, G. Muller, O. Ambacher, and M. Stutzmann, “Group-III-Nitride Based Gas Sensing Devices,” Phys. Stat. Sol. (a), 185(1), pp. 39-45, 2001.
66.J. Schalwig, G. Muller, M. Eickhoff, O. Ambacher, and M.
Stutzmann, “Group III-nitride-based gas sensors for combustion
monitoring,” Materials Science and Engineering B, 93(1-3), pp.
207-214, 2002.
67.黃定加,陳慧英,魏明治, “鈀及鈀合金複合膜之製備及應用研究(Ⅰ)-支撐式鈀/氧化鋁複合膜之改質研究,” 行政院國科會專題研究計畫成果報告(1996)。
68.A. Sergienko, U.S. Patent, 3, 143, 1968.
69.W. V. Hough, J. L. Little and K. V. Warheit, U. S. Patent, 4,
194, 1981.
70.李嗣涔、管傑雄、孫台平,半導體元件物理。
71.I. Lundstrom, M. Armgath, and L.-G. Petersson, “Physics with
catalytic metal gate chemical sensors,” Rev. Solid State Mater.
Sci., 15, pp. 201-278, 1989.
72.J. Liu, C. R. Oritz, Y. Z. Hang, H. Bakhru, and J. W. Corbett,“Effects of hydrogen on the barrier height of a titanium Schottky diode on p-type silicon,” Phys. Rev. B, 44(16), pp. 8918-8922, 1991.
73.H. Nienhaus, H. S. Bergh, B. Gergen, A. Majumdar, W. H.
Weinberg, and E. W. McFarland, J. Vac. Sci. Technol. A, 17(4), pp. 1683-1687, 1999.
74.Y. Q. Jia and G. G. Qin, “Effects of hydrogen on Al/p-Si
Schottky barrier diodes,” Appl. Phys. Lett., 56(7), pp. 641-643, 1990.
75.I. Lundstrom and D. Soderberg, “Isothermal hydrogen desorption from palladium films,” Appl. Surf. Sci., 10, pp. 506-522, 1982.
76.K. Christmann, “Interaction of hydrogen with solid surfaces,” Surf. Sci. Rep., 9, pp. 1-163, 1988.
77.B. Keramati, J. N. Zemel, “Pd–thin-SiO2–Si diode. I.
Isothermal variation of H2-induced interfacial trapping states,”J. Appl. Phys., 53, pp. 1091-1099, 1982.
78.J. Fogelberg, M. Eriksson, H. Dannetun, and L.-G. Petersson,
“Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: Observation of large hydrogen-induced dipoles at the Pd-SiO2 interface,” J. Appl. Phys., 78 (2), pp. 988-996, 1995.
79.W. P. Kang and Y. Gurbuz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys.,
75(12), pp. 8175-8181, 1994.
80.R. A. Alberty and R. J. Silbey, “Physical Chemistry,” New
York: John Wiley & Sons, 1992.
81.Y. Koyama, T. Hashizume, and H. Hasegawa, “Formation processes and properties of Schottky and ohmic contacts on n-type GaN for field effect transistor,” Solid-state electron., 43, pp. 1483-1488, 1999.
82.H. Hasegawa, Y. Koyama, and T. Hashizume, “Properties of Metal-Semiconductor Interfaces Formed on n-Type GaN,” Jpn. j. appl. phys., 38, pp.2634-2639, 1999.
83.周彥伊, “鈀/磷化銦蕭特基二極體氫氣感測器之製備、特性分析及感測機制研究,” 成功大學化工系博士論文 (2005)。
84.J. W. Medlin, A. E. Lutz, R. Bastasz, and A. H. McDaniel, “The response of palladium metal-insulator-semiconductor devices to hydrogen-oxygen mixtures: comparisons between kinetic models and experiment,” Sens. Actuators B, 96(1-2), pp. 290-297, 2003.
85.J. Fogelberg and L. G. Petersson, “Kinetic modeling of the H2-O2 reaction on Pd and of its influence on the hydrogen response of a hydrogen sensitive Pd metal-oxide-semiconductor device,” Surf. Sci., 350, pp. 91-102, 1996.
86.L. G. Petersson, H. M. Dannetun, and I. Lundstrom, “The water-forming reaction on palladium,” Surf. Sci., 161, pp. 77-100, 1985.
87.T. K. Zywietz, J. Neugebauer, and M. Scheffler, “The adsorption of oxygen at GaN surfaces,” Appl. phys. lett., 74(12), pp. 1695-1697, 1999.