簡易檢索 / 詳目顯示

研究生: 林士翔
Lin, Shih-Hsiang
論文名稱: 以流體力學模型模擬超低溫場效電晶體
Hydrodynamic Simulations of MOSFETs at Cryogenic Temperatures
指導教授: 高國興
Kao, Kuo-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 60
中文關鍵詞: 場效電晶體超低溫不完全解離量子運算載子溫度晶格溫度聲子散射雜質散射
外文關鍵詞: MOSFET, cryogenic, quantum computing, lattice temperature, carrier temperature, phonon scattering, impurity scattering
相關次數: 點閱:75下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著這些年量子運算的快速發展,量子運算已經變成世界上熱門的研究主題。在包括工程、生物科技、財經科技、人工智慧、醫療科技等領域之中,量子運算和傳統電腦相比,有機會能以更有效率的方式解決日益複雜的數值、物理問題。

    在不同的物理系統中,採用了先進的半導體技術之矽自旋量子位元(量子位元)成為最有潛力實現量子計算機的發展、增加量子位元數量的選項之一。為了在量子處理器核心上執行初始化,操作和讀取,成熟的CMOS技術已被視為控制器的最佳選項。因此在近年來對於低溫CMOS的元件和行為之研究已成為熱門的研究主題。

    在這篇碩士論文之中,我們會使用以雙閘極電晶體(DGMOSFET)作為元件結構,並以Sentaurus TCAD simulator進行元件模擬。而由於在超低溫下會導致極端小的本質濃度,因此在計算上容易遭遇到嚴重的收斂問題。我們在此篇碩士論文中,會介紹包括低溫物理模型和用以強化收斂性的數學模型。在物理模型中,不同的載子傳輸方程式會被討論,包含飄移擴散模型(Drift-diffusion model)和流體力學模型(Hydrodynamic model),並且我們會比對從常溫到超低溫下的電流電壓特性、晶格溫度、載子溫度等趨勢。在論文最後,晶格溫度和載子溫度分佈中的尖端飄移現象會被著重討論,這些結果將會成為超低溫下電性的物理基礎。

    From the rapid improvement and progress of quantum computing in recent years, it has grown up to be a popular and important research topic. For many scientific research domains, e.g., engineering, biology, finance, artificial intelligence, and medical science, quantum computing may be favorable to solve computationally expensive problems in a relatively shorter time than classical computers.
    Among various physical systems, thanks to sophisticated semiconductor technology, the silicon spin qubit (quantum bit) is one of the most promising candidates realizing the quantum computer with the potential to increase the number of qubits. To perform initialization, manipulation, and readout of individual qubits at the core of a quantum processor, mature CMOS technology has been recognized as the best electronic controller. Consequently, the study of the behavior of cryogenic CMOS, or cryo-CMOS has become a popular research topic in recent years.
    In this master thesis, we use a two-dimensional double gate MOSFET (DGMOSFET) as the device structure and self-consistently calculate the electrical characteristics with the Sentaurus TCAD simulator. Because of the tiny values of intrinsic carrier concentration, numerical simulation at low temperature encounters serious convergence issues. We will introduce the cryogenic physical models, and math models employed in the simulation will be detailed as well, which are essential for solving convergence problems. For physical models, the different carrier transport models will be discussed, including the drift-diffusion model and the hydrodynamic model. We compare the current-voltage characteristics, lattice temperatures, and carrier temperature distribution from room temperature to cryogenic temperatures. Furthermore, the peak shift in lattice temperature and peak shift in carrier temperature would be discussed. These results will be evident in the cryogenic electrical property of the device and will pave the way towards future quantum computing study.

    目錄 口試合格證明 2 Abstract 3 摘要 4 致謝 5 目錄 6 Table captions 8 Figure captions 9 Chapter I 11 1.1 Introduction 11 1.2 Simulation environment 14 Chapter II 15 2.1 Device Structure 15 2.2 Physical model 15 2.2.1 Carrier Transport model 15 2.2.2 Temperature Equation 19 2.2.3 Thermal Boundary Condition 22 2.2.4 Boltzmann Statistics and Fermi Statistics 23 2.2.5 Mobility Model 24 2.2.6 Incomplete ionization 27 2.2.7 Bandgap Narrowing Models (BGN) 29 2.2.8 Shockley–Read–Hall Recombination (SRH) 31 2.2.9 Avalanche Generation 34 2.3 Numerical model 37 2.3.1 Convergence and Error control in cryogenic 37 2.3.2 Traditional Newton Solver 39 2.3.3 Improved Newton Solver 44 Chapter III 46 3.1 Current-Voltage comparison in different carrier transport model 46 3.2 Current-Voltage with simplified High Field Saturation model in hydrodynamic model 48 3.3 Carriers temperature distribution in hydrodynamic model 48 3.4 Lattice temperature distribution in hydrodynamic model 49 3.5 Electron mobility distribution in hydrodynamic model 51 3.6 Avalanche in different temperature in hydrodynamic model 52 Chapter IV 54 4.1 Conclusion 54 4.2 Future Direction 54 Reference 55 Appendix I 57 Appendix II 61 I.1 Drift-diffusion Model (Converge to 35K) 61 I.2 Hydrodynamic Model (Converge to 35K) 64 I.3 Hydrodynamic Model (BasicME model) (Converge to 7K) 67

    Reference in chapter 1
    [1] J. Hornibrook et al., “Cryogenic control architecture for large-scale quantum computing,” Phys. Rev. Appl., vol. 3, no. 2, Feb. 2015, Art. no. 024010.
    [2] D. J. Reilly, “Engineering the quantum-classical interface of solid-state qubits,” npj Quantum Inf., vol. 1, Oct. 2015, Art. no. 15011.
    [3] A. Beckers, F. Jazaeri and C. Enz, "Cryogenic MOS Transistor Model," in IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3617-3625, Sept. 2018.
    [4] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, New York: John Wiley & Sons, 2nd ed., 1985.
    [5] A. Beckers, F. Jazaeri, A. Grill, S. Narasimhamoorthy, B. Parvais ,and C. Enz, "Physical Model of Low-Temperature to Cryogenic Threshold Voltage in MOSFETs," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 780-788, 2020.
    [6] K. -H. Kao et al., "Subthreshold Swing Saturation of Nanoscale MOSFETs Due to Source-to-Drain Tunneling at Cryogenic Temperatures," in IEEE Electron Device Letters, vol. 41, no. 9, pp. 1296-1299, Sept. 2020.
    [7] A. Beckers, F. Jazaeri, H. Bohuslavskyi, L. Hutin, S. De Franceschi and C. Enz, "Design-oriented modeling of 28 nm FDSOI CMOS technology down to 4.2 K for quantum computing," 2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), Granada, 2018.
    [8] A. Beckers, F. Jazaeri and C. Enz, "Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K," in IEEE Journal of the Electron Devices Society, vol. 6, pp. 1007-1018, 2018.
    [9] H. Bohuslavskyi, et al., “Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening”, IEEE Trans. Electron Devices, 40, 784, 2019.
    [10] H. Y. Wong, "Calibrated Si Mobility and Incomplete Ionization Models with Field Dependent Ionization Energy for Cryogenic Simulations," 2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kobe, Japan, 2020, pp. 193-196.

    Reference in chapter 2
    [11] C. Canali et al., “Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature,” IEEE Transactions on Electron Devices, vol. ED-22, no. 11, pp. 1045–1047, 1975.
    [12] G. Masetti, M. Severi, and S. Solmi, “Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-, and Boron-Doped Silicon,” IEEE Transactions on Electron Devices, vol. ED-30, no. 7, pp. 764–769, 1983.
    [13] Sentaurus™ Device User Guide, Synopsys, December 2019.
    [14] D. P. Foty, “Impurity ionization in MOSFETs at very low temperatures,” Cryogenics, vol. 30, no. 12, pp. 1056–1063, 1990.
    [15] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, Hoboken, NJ, USA: Wiley, 2006.
    [16] Morin, F.J., and Maita, J.P. (1954). Electrical properties of silicon containing arsenic and boron. Phys. Rev. 96, 28–35.
    [17] Neamen, D. A., Ed. Semiconductor Physics and Devices: Basic Principles, 2nd ed.; Irwin: Chicago, 1996.
    [18] https://www.iue.tuwien.ac.at/phd/ayalew/node63.html
    [19] W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap in silicon,” Journal of Applied Physics, vol. 45, no. 4, pp. 1846–1848, 1974.
    [20] J. R. Lowney and H. S. Bennett, "Effect of donor impurities on the conduction and valence bands of silicon", J. Appl. Phys., vol. 53, pp. 433-438, Jan 1962.
    [21] H. S. Bennett, "Improved concepts for predicting the electrical behavior of bipolar structures in silicon," in IEEE Transactions on Electron Devices, vol. 30, no. 8, pp. 920-927, Aug. 1983.
    [22] H. S. Bennett and C. L. Wilson, “Statistical comparisons of data on band-gap narrowing in heavily doped silicon: Electrical and optical measurements,” Journal of Applied Physics, vol. 55, no. 10, pp. 3582–3587, 1984.
    [23] G. D. Mahan, “Energy gap in Si and Ge: Impurity dependence,” J. Appl. Phys., vol. 51, no. 5, pp. 2634–2646, May 1980.
    [24] M. S. Tyagi and R. Van Overstraeten, “Minority Carrier Recombination in HeavilyDoped Silicon,” Solid-State Electronics, vol. 26, no. 6, pp. 577–597, 1983.
    [25] H. Goebel and K. Hoffmann, “Full Dynamic Power Diode Model Including Temperature Behavior for Use in Circuit Simulators,” in Proceedings of the 4th International Symposium on Power Semiconductor Devices & ICs (ISPSD), Tokyo, Japan, pp. 130–135, May 1992.
    [26] A. G. Chynoweth, “Ionization Rates for Electrons and Holes in Silicon,” Physical Review, vol. 109, no. 5, pp. 1537–1540, 1958.
    [27] R. van Overstraeten and H. de Man, “Measurement of the Ionization Rates in Diffused Silicon p-n Junctions,” Solid-State Electronics, vol. 13, no. 1, pp. 583–608, 1970.

    Reference in chapter 3
    [28] BAND-TO-BAND TUNNELING MODEL CALIBRATION AND DESIGN OPTIMIZATION OF GROUP IV TUNNEL-FETS, Frank Kao

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE