簡易檢索 / 詳目顯示

研究生: 黃威碩
Huang, Wei-Shuo
論文名稱: 以分子模擬探討鋰離子電池中複合型電解質的陶瓷/高分子界面之離子傳遞機制
Lithium-Ion Transport Mechanism at The Ceramics/Polymer Interface within Composite Polymer Electrolyte for Lithium-Ion Battery: A Molecular Dynamics Simulation Study
指導教授: 邱繼正
Chiu, Chi-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 82
中文關鍵詞: 鋰離子電池複合型電解質分子動力學模擬
外文關鍵詞: Lithium-Ion Batteries, Composite Electrolyte, Molecule Dynamics Simulations
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract III Acknowledgments V Table of Contents VI List of Tables IX List of Figures XI Chapter 1 Introduction 1 1.1       Lithium-Ion Batteries (LIBs) History and Development 1 1.2       Working Principle of LIBs 3 1.3       Components of LIBs 4 1.4       Motivation 7 Chapter 2 Literature Review 8 2.1       Electrolytes in Lithium-Ion Battery 8 2.2       Application of Polymer Electrolytes in LIBs 8 2.2.1    Poly Ethylene Oxide (PEO) 8 2.2.2    Improvement Technique 10 2.3       Application of Ceramic Solid Electrolytes in LIBs 12 2.3.1    Garnet type 12 2.3.2    NASICON type 12 2.4       Composite Electrolytes in LIBs 13 2.4.1    Inert Fillers 14 2.4.2    Active Fillers 14 2.4.3    Li+ Transport Mechanisms 16 2.5       Simulation of Composite Electrolyte 18 2.5.1    Li+ Pathway 18 2.5.2    Interfacial Dynamics 19 Chapter 3 Method 21 3.1       Research Framework 21 3.2       Polymer Electrolyte Model 22 3.2.1    PEO 23 3.2.2    PEO-POSS Cross-linked Structure 24 3.3       LATP Model 25 3.4       Equilibrium Simulations 26 3.4.1    Bulk Polymer Electrolytes 26 3.4.2    Ceramics Solid Electrolytes 26 3.4.3    Composite Electrolytes 27 3.5       Non-Equilibrium Simulations 28 3.6       Structural Properties 30 3.6.1    Number Density Profiles 30 3.6.2    Radial Distribution Function (RDF) 31 3.6.3    Li+ Coordination Number 31 3.7       Dynamical Properties 32 3.7.1    Mean Squared Displacement and Self Diffusion Coefficient 32 3.7.2    Transference Number 32 3.7.3    Ionic Conductivity 32 3.7.4    Li+ Flux 33 3.7.5    Li+ mobility 33 3.7.6    Local Resistivity and Interfacial Impedance 34 3.7.7    Autocorrelation Function of Dihedral-Angle 34 Chapter 4 Results and Discussion 36 4.1       Polymer Electrolytes System 36 4.1.1    Pure PEO Polymer 36 4.1.2    Li+ transport within Polymer Electrolytes 39 4.1.3    Effect of POSS 42 4.2       Ceramic Solid Electrolytes System 44 4.2.1    LATP in Crystalline phase 45 4.2.2    LATP with Grain Boundaries47 4.3       Composite Electrolytes System: Comparison on LATP Structures 50 4.3.1    Structural Properties 51 4.3.2    Dynamical Properties 53 4.4       Composite Electrolytes System: Comparison on Polymer Electrolyte 56 4.4.1    Structural Properties 56 4.4.2    Dynamical Properties 59 4.5       Composite Electrolytes System: Non-Equilibrium Condition 63 4.5.1    Parallel to LATP/Polymer Interface 64 4.5.2    Perpendicular to LATP/Polymer Interface 66 4.5.3    Ion Transport Impedance 69 Chapter 5 Conclusion 73 Reference 75

    1.         Whittingham, M.S., Electrical energy storage and intercalation chemistry. Science, 1976. 192(4244): p. 1126-7.
    2.         J. Goodenough, M.S.W., LITHIUM-ION BATTERIES. THE ROYAL SWEDISH ACADEMY OF SCIENCES, 2019: p. 1–13.
    3.         Ozawa, K., Lithium-Ion Rechargeable Batteries with Licoo2 and Carbon Electrodes - the Licoo2 C System. Solid State Ionics, 1994. 69(3-4): p. 212-221.
    4.         Kim, T., et al., Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of Materials Chemistry A, 2019. 7(7): p. 2942-2964.
    5.         Miao, Y.P., et al., High concentration from resources to market heightens risk for power lithium-ion battery supply chains globally. Environmental Science and Pollution Research, 2023.
    6.         Roy, P. and S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015. 3(6): p. 2454-2484.
    7.         Bednorz, R. and T. Gewald, Investigation of the Effects of Charging Processes on Lithium-Ion Cells with SiC Anodes at Low Temperatures. Batteries-Basel, 2020. 6(2).
    8.         Blomgren, G.E., The Development and Future of Lithium Ion Batteries. Journal of the Electrochemical Society, 2017. 164(1): p. A5019-A5025.
    9.         Mahmoud, A., et al., On the LiCo2/3Ni1/6Mn1/6O2 positive electrode material. Electrochimica Acta, 2011. 56(11): p. 4081-4086.
    10.       Wang, G.X., et al., Electrochemical study on orthorhombic LiMnO2 as cathode in rechargeablelithium batteries. Journal of Applied Electrochemistry, 1999. 29(12): p. 1423-1426.
    11.       Manthiram, A., A reflection on lithium-ion battery cathode chemistry. Nature Communications, 2020. 11(1).
    12.       Wu, Y.P., et al., Anode materials for lithium ion batteries by oxidative treatment of common natural graphite. Solid State Ionics, 2003. 156(3): p. 283-290.
    13.       Cao, F., et al., Evaluation of graphite materials as anodes for lithium-ion batteries. Journal of the Electrochemical Society, 2000. 147(10): p. 3579-3583.
    14.       Eickhoff, H., et al., Polyanionic Frameworks in the Lithium Phosphidogermanates Li2GeP2 and LiGe3P3 - Synthesis, Structure, and Lithium Ion Mobility. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020. 646(3): p. 95-102.
    15.       Zhang, H., et al., Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials, 2021. 36: p. 147-170.
    16.       Takamura, T., et al., A key technology to improve the cyclic performances of carbonaceous materials for lithium secondary battery anodes. Journal of Power Sources, 1997. 68(1): p. 114-119.
    17.       Hanai, K., et al., Electrochemical behavior of the composite anodes consisting of carbonaceous materials and lithium transition-metal nitrides for lithium-ion batteries. Solid State Ionics, 2008. 179(27-32): p. 1725-1730.
    18.       Khurana, R., et al., Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries. Journal of the American Chemical Society, 2014. 136(20): p. 7395-7402.
    19.       Ahmad, Z., Z.J. Hong, and V. Viswanathan, Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020. 117(43): p. 26672-26680.
    20.       Moharana, S., et al., Controlling Li Dendritic Growth in Graphite Anodes by Potassium Electrolyte Additives for Li-Ion Batteries. Acs Applied Materials & Interfaces, 2022. 14(37): p. 42078-42092.
    21.       Ong, M.T., et al., Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First-Principles and Classical Reactive Molecular Dynamics. Journal of Physical Chemistry B, 2015. 119(4): p. 1535-1545.
    22.       Lee, S.I., et al., A study of electrochemical kinetics of lithium ion in organic electrolytes. Korean Journal of Chemical Engineering, 2002. 19(4): p. 638-644.
    23.       Shi, C., et al., Revealing the mechanisms of lithium-ion transport and conduction in composite solid polymer electrolytes. Cell Reports Physical Science, 2023. 4(3).
    24.       Choo, Y., et al., Diffusion and migration in polymer electrolytes. Progress in Polymer Science, 2020. 103.
    25.       Deimede, V. and C. Elmasides, Separators for Lithium-Ion Batteries: A Review on the Production Processes and Recent Developments. Energy Technology, 2015. 3(5): p. 453-468.
    26.       Luiso, S. and P. Fedkiw, Lithium-ion battery separators: Recent developments and state of art. Current Opinion in Electrochemistry, 2020. 20: p. 99-107.
    27.       Costa, C.M., M.M. Silva, and S. Lanceros-Mendez, Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. Rsc Advances, 2013. 3(29): p. 11404-11417.
    28.       Zhou, H.W., et al., The Role of Separator Thermal Stability in Safety Characteristics of Lithium-ion Batteries. Journal of the Electrochemical Society, 2022. 169(9).
    29.       Yu, X.W. and A. Manthiram, A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 2021. 34: p. 282-300.
    30.       Fenton, D.E., J.M. Parker, and P.V. Wright, Complexes of Alkali-Metal Ions with Poly(Ethylene Oxide). Polymer, 1973. 14(11): p. 589-589.
    31.       Jr., D.T.H. and N.P. Balsara, Polymer Electrolytes. Annual Review of Materials Research, 2013. 43(1): p. 503-525.
    32.       Bocharova, V. and A.P. Sokolov, Perspectives for Polymer Electrolytes: A View from Fundamentals of Ionic Conductivity. Macromolecules, 2020. 53(11): p. 4141-4157.
    33.       Morgan, B.J., Mechanistic Origin of Superionic Lithium Diffusion in Anion-Disordered Li6PS5X Argyrodites. Chemistry of Materials, 2021. 33(6): p. 2004-2018.
    34.       Varzi, A., et al., Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. Journal of Materials Chemistry A, 2016. 4(44): p. 17251-17259.
    35.       Funke, K., Jump Relaxation in Solid Electrolytes. Progress in Solid State Chemistry, 1993. 22(2): p. 111-195.
    36.       Blanga, R., et al., Solid Polymer-in-Ceramic Electrolyte Formed by Electrophoretic Deposition. Journal of the Electrochemical Society, 2015. 162(11): p. D3084-D3089.
    37.       Bonizzoni, S., et al., NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Physical Chemistry Chemical Physics, 2019. 21(11): p. 6142-6149.
    38.       Hou, W.R., et al., Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective. Nano Energy, 2018. 52: p. 279-291.
    39.       Wang, Z.X., et al., Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolyte by Raman and infrared spectroscopy. Electrochimica Acta, 1996. 41(9): p. 1443-1446.
    40.       Choe, H.S., et al., Preparation and Characterization of Poly(Vinyl-Sulfone)-Based and Poly(Vinylidene-Fluoride)-Based Electrolytes. Electrochimica Acta, 1995. 40(13-14): p. 2289-2293.
    41.       Ngai, K.S., et al., A review of polymer electrolytes: fundamental, approaches and applications. Ionics, 2016. 22(8): p. 1259-1279.
    42.       Croce, F., et al., Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998. 394(6692): p. 456-458.
    43.       Feng, J.N., et al., PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence, 2021. 8(1).
    44.       Barbosa, J.C., et al., Metal-organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances, 2021. 2(12): p. 3790-3805.
    45.      Park, S.-J., et al., Influence of crystallinity on ion conductivity of PEO-based solid electrolytes for lithium batteries. Macromolecular Research, 2010. 18(4): p. 336-340.
    46.       Rajendran, S., R. Kannan, and O. Mahendran, An electrochemical investigation on PMMA/PVdF blend-based polymer electrolytes. Materials Letters, 2001. 49(3-4): p. 172-179.
    47.       Hsu, S.T., et al., Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature. Journal of Power Sources, 2020. 449.
    48.       Pan, Q.W., et al., Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries. Advanced Materials, 2015. 27(39): p. 5995-6001.
    49.       Aono, H., et al., Ionic-Conductivity and Sinterability of Lithium Titanium Phosphate System. Solid State Ionics, 1990. 40-1: p. 38-42.
    50.       Kasper, H.M., A New Series of Rare Earth Garnets Ln3+3m2li+3o12(M=Te,W). Inorganic Chemistry, 1969. 8(4): p. 1000-&.
    51.       Thangadurai, V. and W. Weppner, Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics, 2006. 12(1): p. 81-92.
    52.       Stegmaier, S., et al., Nano-Scale Complexions Facilitate Li Dendrite-Free Operation in LATP Solid-State Electrolyte. Advanced Energy Materials, 2021. 11(26).
    53.      Monchak, M., et al., Lithium Diffusion Pathway in Li1.3Al0.3Ti1.7(PO4)(3) (LATP) Superionic Conductor. Inorganic Chemistry, 2016. 55(6): p. 2941-2945.
    54.       Kennedy, J.H., et al., Preparation and Conductivity Measurements of Sis2-Li2s Glasses Doped with Libr and Licl. Solid State Ionics, 1986. 18-9: p. 368-371.
    55.       Lacivita, V., et al., Resolving the Amorphous Structure of Lithium Phosphorus Oxynitride (Lipon). Journal of the American Chemical Society, 2018. 140(35): p. 11029-11038.
    56.       Wang, C.W., et al., Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. Chemical Reviews, 2020. 120(10): p. 4257-4300.
    57.       Fu, K., et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(26): p. 7094-7099.
    58.       Chen, F., et al., Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochimica Acta, 2017. 258: p. 1106-1114.
    59.       Cheng, S.H.S., et al., Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochimica Acta, 2017. 253: p. 430-438.
    60.       Chen, L., et al., PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic". Nano Energy, 2018. 46: p. 176-184.
    61.       Thangadurai, V., S. Narayanan, and D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews, 2014. 43(13): p. 4714-4727.
    62.       Ashton, T.E., et al., Phase Evolution and Li Diffusion in LATP Solid-State Electrolyte Synthesized via a Direct Heat-Cycling Method. Advanced Energy and Sustainability Research, 2022. 3(8).
    63.       Huang, L.Z., et al., Electrochemical properties of Li1.4Al0.4Ti1.6(PO4)(3) synthesized by a co-precipitation method. Journal of Power Sources, 2011. 196(16): p. 6943-6946.
    64.       He, X.F., et al., Crystal Structural Framework of Lithium Super-Ionic Conductors. Advanced Energy Materials, 2019. 9(43).
    65.       Bertrand, M., et al., Compatibility assessment of solid ceramic electrolytes and active materials based on thermal dilatation for the development of solid-state batteries. Materials Advances, 2021. 2(9): p. 2989-2999.
    66.       Jin, Y.M., et al., Interface engineering of Li1.3Al0.3Ti1.7(PO4)(3) ceramic electrolyte via multifunctional interfacial layer for all-solid-state lithium batteries. Journal of Power Sources, 2020. 460.
    67.       Merrill, L.C., et al., Polymer-Ceramic Composite Electrolytes for Lithium Batteries: A Comparison between the Single-Ion-Conducting Polymer Matrix and Its Counterpart. Acs Applied Energy Materials, 2020. 3(9): p. 8871-8881.
    68.       Horowitz, Y., et al., Review-Polymer/Ceramic Interface Barriers: The Fundamental Challenge for Advancing Composite Solid Electrolytes for Li-Ion Batteries. Journal of the Electrochemical Society, 2020. 167(16).
    69.       Blake, A.J., et al., 3D Printable Ceramic-Polymer Electrolytes for Flexible High-Performance Li-Ion Batteries with Enhanced Thermal Stability. Advanced Energy Materials, 2017. 7(14).
    70.       Zhou, D., et al., SiO2 Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life. Advanced Energy Materials, 2016. 6(7).
    71.       Kumar, B. and L.G. Scanlon, Polymer-ceramic composite electrolytes: conductivity and thermal history effects. Solid State Ionics, 1999. 124(3-4): p. 239-254.
    72.       Sheng, O.W., et al., Mg2B2O5 Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance. Nano Letters, 2018. 18(5): p. 3104-3112.
    73.       Zagorski, J., et al., Garnet-Polymer Composite Electrolytes: New Insights on Local Li-Ion Dynamics and Electrodeposition Stability with Li Metal Anodes. Acs Applied Energy Materials, 2019. 2(3): p. 1734-1746.
    74.       Wang, C.H., et al., Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. Acs Applied Materials & Interfaces, 2017. 9(15): p. 13694-13702.
    75.       Meng, N., X.G. Zhu, and F. Lian, Particles in composite polymer electrolyte for solid-state lithium batteries: A review. Particuology, 2022. 60: p. 14-36.
    76.       Zheng, J. and Y.Y. Hu, New Insights into the Compositional Dependence of Li-Ion Transport in Polymer-Ceramic Composite Electrolytes. Acs Applied Materials & Interfaces, 2018. 10(4): p. 4113-4120.
    77.       Yan, Y.Y., et al., In Situ Polymerization Permeated Three-Dimensional Li+-Percolated Porous Oxide Ceramic Framework Boosting All Solid-State Lithium Metal Battery. Advanced Science, 2021. 8(9).
    78.       Bonilla, M.R., et al., Unveiling Interfacial Li-Ion Dynamics in Li7La3Zr2O12/PEO(LiTFSI) Composite Polymer-Ceramic Solid Electrolytes for All-Solid-State Lithium Batteries. Acs Applied Materials & Interfaces, 2021. 13(26): p. 30653-30667.
    79.       Li, Z., et al., Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites. Acs Applied Materials & Interfaces, 2019. 11(1): p. 784-791.
    80.       Bayly, C.I., et al., A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges - the Resp Model. Journal of Physical Chemistry, 1993. 97(40): p. 10269-10280.
    81.       Devlin, F.J., et al., Ab initio prediction of vibrational absorption and circular dichroism spectra of chiral natural products using density functional theory: alpha-pinene. Journal of Physical Chemistry A, 1997. 101(51): p. 9912-9924.
    82.       Raghavachari, K., Perspective on "Density functional thermochemistry. III. The role of exact exchange" - Becke AD (1993) J Chem Phys 98:5648-52. Theoretical Chemistry Accounts, 2000. 103(3-4): p. 361-363.
    83.       Wang, J.M., et al., Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 2006. 25(2): p. 247-260.
    84.       Wang, J.M., et al., Development and testing of a general amber force field (vol 25, pg 1157, 2004). Journal of Computational Chemistry, 2005. 26(1): p. 114-114.
    85.       Fang, C.-E., Ion Transport Mechanisms of Solid Polymer Electrolyte with Silsesquioxane Crosslinking Polyethylene Glycol Framework for Lithium Ion Battery: A Molecular Simulation Study. National Cheng Kung University, 2020.
    86.       Almishal, S.S.I., T.M. Hatem, and I.S. El-Mahallawi, A molecular dynamics study of the effect of Coulomb Buckingham Potential on equilibrium structural properties of calcium titanate perovskite. Current Applied Physics, 2022. 40: p. 126-131.
    87.       Migliorati, V., et al., Development of Lennard-Jones and Buckingham Potentials for Lanthanoid Ions in Water. Inorganic Chemistry, 2017. 56(11): p. 6214-6224.
    88.       Allouche, A.R., Gabedit-A Graphical User Interface for Computational Chemistry Softwares. Journal of Computational Chemistry, 2011. 32(1): p. 174-182.
    89.       Smith, G.D., et al., A molecular dynamics simulation study of LiFePO4/electrolyte interfaces: structure and Li+ transport in carbonate and ionic liquid electrolytes. Physical Chemistry Chemical Physics, 2009. 11(42): p. 9884-9897.
    90.       Liu, H.S., et al., Comparing the effects of polymer binders on Li+ transport near the liquid electrolyte/LiFePO4 interfaces: A molecular dynamics simulation study. Electrochimica Acta, 2021. 375.
    91.       Polyethylene glycol [MAK Value Documentation, 1998]. In The MAK-Collection for Occupational Health and Safety 2012: p. 248-270.
    92.       Koizumi, N.H., Tetsuya, Dielectric Properties of Polyethylene Glycols : Dielectric Relaxation in Solid State (Special Issue on Polymer Chemistry, I). Bulletin of the Institute for Chemical Research, Kyoto University, 1964. 42: p. 115-127.
    93.       Kou, Y., et al., Thermal analysis and heat capacity study of polyethylene glycol (PEG) phase change materials for thermal energy storage applications. Journal of Chemical Thermodynamics, 2019. 128: p. 259-274.
    94.       Tsujita, Y., T. Nose, and T. Hata, Thermodynamic Properties of Poly(Ethylene Glycol) and Poly(Tetrahydrofuran) .1. P-V-T Relations and Internal Pressure. Polymer Journal, 1973. 5(2): p. 201-207.
    95.       Liu, T.M., et al., High ion-conducting solid polymer electrolytes based on blending hybrids derived from monoamine and diamine polyethers for lithium solid-state batteries. Rsc Advances, 2017. 7(33): p. 20373-20383.
    96.       Lin, D.C., et al., High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). Nano Letters, 2016. 16(1): p. 459-465.
    97.       Behbahani, A.F. and V. Harmandaris, Gradient of Segmental Dynamics in Stereoregular Poly(methyl methacrylate) Melts Confined between Pristine or Oxidized Graphene Sheets. (vol 13, 830, 2021). Polymers, 2022. 14(1).
    98.       Mogurampelly, S. and V. Ganesan, Effect of Nanoparticles on Ion Transport in Polymer Electrolytes. Macromolecules, 2015. 48(8): p. 2773-2786.

    無法下載圖示 校內:2028-07-31公開
    校外:2028-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE