| 研究生: |
林伯祐 Lin, Bor-yow |
|---|---|
| 論文名稱: |
第一型膠原蛋白的聚合狀態對血管平滑肌細胞表現型的影響 The effect of the polymerization state of type I collagen on the phenotype of vascular smooth muscle cells |
| 指導教授: |
江美治
Jiang, Meei-jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 第一型膠原蛋白 、血管平滑肌細胞 、肌動蛋白 |
| 外文關鍵詞: | Type I collagen, VSMC, actin |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞位於生物體內時是被一複雜的聚合物所包覆即所謂的細胞外間質。膠原蛋白是構成血管壁的細胞間質中最主要的結構蛋白。在平滑肌細胞分化過程中,平滑肌細胞會藉由表現許多分化的指標蛋白例如smooth muscle α-actin (SM-α-actin)、 SM22、 calponin、 h-caldesmon (h-CaD) 和 smooth muscle myosin heavy chain (SM-MHC)從合成型表現型轉變成收縮型表現型.。這個研究主要探討第一型膠原蛋白的聚合狀態和軟硬度對於培養的平滑肌細胞行為的作用。老鼠血管平滑肌細胞培養在有覆蓋單體的膠原蛋白 (mC) 或覆蓋聚合體的膠原蛋白 (pC) 或聚合體的膠原蛋白凝膠 (pG) 的培養皿上作為實驗組,培養在一般培養皿 (uC) 當成控制組。本實驗中檢視了肌動蛋白纖維 (actin filament)、微管蛋白 (microtubule) 和 SM-α-actin在細胞中的分布。實驗結果顯示,血管平滑肌細胞伸展的比較大當培養在單體的膠原蛋白上時,而培養在聚合體的膠原蛋白上時細胞則變的比較小且有許多絲狀偽足 (filopodia)。Phallodin染色結果顯示肌動蛋白纖維的分布在細胞培養在uC和mC上時,主要是以應激纖維 (stress fiber) 的形式呈現。而培養在pG和pC上時,有80%以上細胞中的肌動蛋白纖維會形成網狀 (meshwork) 的構型,並且出現許多類似粘著斑 (focal adhesion) 的點狀構造。同樣的結果也可在SM-α-actin的分布中觀察到。而微管蛋白 (microtubules)的分布情形在此4種不同的培養條件下都無顯著的差異。為了探討由第一型膠原蛋白所引發的訊息傳遞路徑,我們檢視了FAK的表現和活化以及粘著斑相關蛋白(focal adhesion-associated protein ) vinculin的在細胞中的分布情形。細胞培養在單體的或聚合體的膠原蛋白上時,FAK皆有磷酸化 (phosphorylation)的情形,但表現量在pG上則是下降的。Vinculin最主要是跟肌動蛋白應激纖維 (stress fiber)而不與網狀的肌動蛋白纖維構型有co-localize。為了了解integrin在血管平滑肌細胞培養在不同形式的膠原蛋白後,其呈現不同肌動纖維蛋白構型所扮演之角色,我們檢視了β1 integrin 在細胞中的分布,以及將β1或α1或α2 integrin抑制後對於肌動蛋白的構型是否有所影響。β1 integrin會形成粘著斑並與肌動蛋白應激纖維和網狀構造皆有co-localize。血管平滑肌細胞攤開在單體的或聚合體的膠原蛋白,以及絲狀偽足和肌動蛋白應激纖維的形成都需要β1 integrin和部分的α1 integrin參與。血管平滑肌細胞分化指標蛋白則利用西方點墨法偵測其表現量。血管平滑肌細胞培養在聚合體膠原蛋白上時,其分化指標蛋白例如: SM-MHC或h-CaD的表現量則是下降的,然而SM-α-actin的表現量無顯著的差異。由以上實驗結果顯示,不同聚合狀態的第一型膠原蛋白是透過β1 integrin的作用進而影響血管平滑肌細胞的外型,表現型的轉變以及肌動蛋白的構型。
Most cells in multicellular organisms are surrounded by complex structural molecules that make up the extracellular matrix (ECM). Collagens are major structural components of the extracellular matrix of the artery wall. During smooth muscle cells (SMCs) differentiation, immature SMCs develop from synthetic phenotype to contractile phenotype characterized by the expression of various differentiation markers such as smooth muscle -actin (SM-α-actin), SM22, calponin, h-caldesmon (h-CaD) and smooth muscle myosin heavy chain (SM-MHC). SMCs cultured on polymerized collagen retain their contractile phenotype and mimic many of the characteristics of medial SMCs in vivo whereas SMCs cultured on monomeric collagen are proliferative. This study examined the effect of type I collagen polymerization and stiffness on the behavior of cultured SMCs. Rat aortic SMCs (RASMCs) were cultured on monomeric collagen-coated (mC), polymeric collagen-coated (pC) or polymeric collagen gel (pG) with uncoated dish as control. The distribution of actin filament, microtubules, and SM-α-actin was examined. RASMCs appeared more extended on mC but smaller and with many filopodia on polymeric collagen. Actin filaments detected by phalloidin mainly appeared as stress fibers traversing the cell in RASMCs of mC and control. In contrast, actin filaments formed a meshwork in more than 80% of RASMCs cultured on polymeric collagen, exhibiting prominent structures analogous to focal adhesions. Similar results were observed in SM-α-actin distribution. No difference was detected in microtubule distribution among different conditions. To investigate the signaling pathways from type I collagen, FAK phosphorylation and expression and the distribution of focal adhesion-associated protein, vinculin, were examined. FAK was phosphorylated in RASMCs cultured on both monomeric and polymeric collagen, but the expression of FAK was decreased in RASMCs cultured on pG. Vinculin was co-localized with actin filament along stress fibers but not at actin filament meshwork. To examine the role of integrin in actin filament organization in RASMCs cultured on different forms of collagen, the actin filament organization was examined by phalloidin staining following functional blocking of β1, α1 or α2 integrin with specific antibodies. Using immunofluorescence, β1 integrin was detected at focal adhesions, exhibiting partial co-localization with actin stress fibers and actin meshwork. Functional blocking of β1, α1 or α2 integrin with specific antibody showed that β1 integrin and at least in part, α1 integrin were required for RASMCs spreading, filopodia and actin stress fiber formation in RASMCs cultured on different forms of collagen. The expression of VSMC differentiation markers was examined by Western blot. The expression of differentiation markers, SM-MHC and h-CaD, but not SM-α-actin, decreased in RASMCs cultured on polymeric collagen. These results suggest that the polymerization state of type I collagen substratum modulates cell morphology, phenotypic change and actin filament organization of VSMC in β1 integrin-dependent manner.
1. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995;75(3):487-517.
2. Sobue K, Hayashi K, Nishida W. Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation. Mol Cell Biochem. 1999;190(1-2):105-118.
3. Kuro-o M, Nagai R, Tsuchimochi H, Katoh H, Yazaki Y, Ohkubo A, Takaku F. Developmentally regulated expression of vascular smooth muscle myosin heavy chain isoforms. J Biol Chem. 1989;264(31):18272-18275.
4. Owens GK, Wise G. Regulation of differentiation/maturation in vascular smooth muscle cells by hormones and growth factors. Agents Actions Suppl. 1997;48:3-24.
5. Berrier AL, Yamada KM. Cell-matrix adhesion. J Cell Physiol. 2007;213(3):565-573.
6. Schnaper HW, Kleinman HK. Regulation of cell function by extracellular matrix. Pediatr Nephrol. 1993;7(1):96-104.
7. Myllyharju J, Kivirikko KI. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004;20(1):33-43.
8. Brodsky B, Persikov AV. Molecular structure of the collagen triple helix. Adv Protein Chem. 2005;70:301-339.
9. Mayo KH. NMR and x-ray studies of collagen model peptides. Biopolymers. 1996;40(4):359-370.
10. Okuyama K, Xu X, Iguchi M, Noguchi K. Revision of collagen molecular structure. Biopolymers. 2006;84(2):181-191.
11. Prockop DJ, Kivirikko KI. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 1995;64:403-434.
12. Xu Y, Gurusiddappa S, Rich RL, Owens RT, Keene DR, Mayne R, Hook A, Hook M. Multiple binding sites in collagen type I for the integrins alpha1beta1 and alpha2beta1. J Biol Chem. 2000;275(50):38981-38989.
13. Heino J. The collagen family members as cell adhesion proteins. Bioessays. 2007;29(10):1001-1010.
14. White DJ, Puranen S, Johnson MS, Heino J. The collagen receptor subfamily of the integrins. Int J Biochem Cell Biol. 2004;36(8):1405-1410.
15. Gullberg DE, Lundgren-Akerlund E. Collagen-binding I domain integrins--what do they do? Prog Histochem Cytochem. 2002;37(1):3-54.
16. Heino J. The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol. 2000;19(4):319-323.
17. Santoro SA, Zutter MM, Wu JE, Staatz WD, Saelman EU, Keely PJ. Analysis of collagen receptors. Methods Enzymol. 1994;245:147-183.
18. Camper L, Hellman U, Lundgren-Akerlund E. Isolation, cloning, and sequence analysis of the integrin subunit alpha10, a beta1-associated collagen binding integrin expressed on chondrocytes. J Biol Chem. 1998;273(32):20383-20389.
19. Velling T, Kusche-Gullberg M, Sejersen T, Gullberg D. cDNA cloning and chromosomal localization of human alpha(11) integrin. A collagen-binding, I domain-containing, beta(1)-associated integrin alpha-chain present in muscle tissues. J Biol Chem. 1999;274(36):25735-25742.
20. Turner DC, Flier LA, Carbonetto S. Identification of a cell-surface protein involved in PC12 cell-substratum adhesion and neurite outgrowth on laminin and collagen. J Neurosci. 1989;9(9):3287-3296.
21. Riikonen T, Westermarck J, Koivisto L, Broberg A, Kahari VM, Heino J. Integrin alpha 2 beta 1 is a positive regulator of collagenase (MMP-1) and collagen alpha 1(I) gene expression. J Biol Chem. 1995;270(22):13548-13552.
22. Klein CE, Dressel D, Steinmayer T, Mauch C, Eckes B, Krieg T, Bankert RB, Weber L. Integrin alpha 2 beta 1 is upregulated in fibroblasts and highly aggressive melanoma cells in three-dimensional collagen lattices and mediates the reorganization of collagen I fibrils. J Cell Biol. 1991;115(5):1427-1436.
23. Riikonen T, Koivisto L, Vihinen P, Heino J. Transforming growth factor-beta regulates collagen gel contraction by increasing alpha 2 beta 1 integrin expression in osteogenic cells. J Biol Chem. 1995;270(1):376-382.
24. Schiro JA, Chan BM, Roswit WT, Kassner PD, Pentland AP, Hemler ME, Eisen AZ, Kupper TS. Integrin alpha 2 beta 1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells. Cell. 1991;67(2):403-410.
25. Mechtersheimer G, Barth T, Quentmeier A, Moller P. Differential expression of beta 1 integrins in nonneoplastic smooth and striated muscle cells and in tumors derived from these cells. Am J Pathol. 1994;144(6):1172-1182.
26. Tiger CF, Fougerousse F, Grundstrom G, Velling T, Gullberg D. alpha11beta1 integrin is a receptor for interstitial collagens involved in cell migration and collagen reorganization on mesenchymal nonmuscle cells. Dev Biol. 2001;237(1):116-129.
27. Camper L, Holmvall K, Wangnerud C, Aszodi A, Lundgren-Akerlund E. Distribution of the collagen-binding integrin alpha10beta1 during mouse development. Cell Tissue Res. 2001;306(1):107-116.
28. Zutter MM, Santoro SA. Widespread histologic distribution of the alpha 2 beta 1 integrin cell-surface collagen receptor. Am J Pathol. 1990;137(1):113-120.
29. Chung E, Miller EJ. Collagen polymorphism: characterization of molecules with the chain composition (alpha 1 (3)03 in human tissues. Science. 1974;183(130):1200-1201.
30. Halme T, Peltonen J, Sims TJ, Vihersaari T, Penttinen R. Collagen in human aorta. Changes in the type III/I ratio and concentration of the reducible crosslink, dehydrohydroxylysinonorleucine in ascending aorta from healthy subjects of different age and patients with annulo-aortic ectasia. Biochim Biophys Acta. 1986;881(2):222-228.
31. Morton LF, Barnes MJ. Collagen polymorphism in the normal and diseased blood vessel wall. Investigation of collagens types I, III and V. Atherosclerosis. 1982;42(1):41-51.
32. Trelstad RL. Human aorta collagens: evidence for three distinct species. Biochem Biophys Res Commun. 1974;57(3):717-725.
33. Hanson AN, Bentley JP. Quantitation of type I to type III collagen ratios in small samples of human tendon, blood vessels, and atherosclerotic plaque. Anal Biochem. 1983;130(1):32-40.
34. Bendeck MP, Regenass S, Tom WD, Giachelli CM, Schwartz SM, Hart C, Reidy MA. Differential expression of alpha 1 type VIII collagen in injured platelet-derived growth factor-BB--stimulated rat carotid arteries. Circ Res. 1996;79(3):524-531.
35. MacBeath JR, Kielty CM, Shuttleworth CA. Type VIII collagen is a product of vascular smooth-muscle cells in development and disease. Biochem J. 1996;319 ( Pt 3):993-998.
36. Sibinga NE, Foster LC, Hsieh CM, Perrella MA, Lee WS, Endege WO, Sage EH, Lee ME, Haber E. Collagen VIII is expressed by vascular smooth muscle cells in response to vascular injury. Circ Res. 1997;80(4):532-541.
37. Meek KM, Chapman JA, Hardcastle RA. The staining pattern of collagen fibrils. Improved correlation with sequence data. J Biol Chem. 1979;254(21):10710-10714.
38. Klebe RJ. Isolation of a collagen-dependent cell attachment factor. Nature. 1974;250(463):248-251.
39. Schor SL. Cell proliferation and migration on collagen substrata in vitro. J Cell Sci. 1980;41:159-175.
40. Friedl P, Brocker EB. The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci. 2000;57(1):41-64.
41. Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol. 2000;149(6):1309-1323.
42. Behrens J, Mareel MM, Van Roy FM, Birchmeier W. Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol. 1989;108(6):2435-2447.
43. Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell. 1996;87(6):1069-1078.
44. Ichii T, Koyama H, Tanaka S, Kim S, Shioi A, Okuno Y, Raines EW, Iwao H, Otani S, Nishizawa Y. Fibrillar collagen specifically regulates human vascular smooth muscle cell genes involved in cellular responses and the pericellular matrix environment. Circ Res. 2001;88(5):460-467.
45. Raines EW, Koyama H, Carragher NO. The extracellular matrix dynamically regulates smooth muscle cell responsiveness to PDGF. Ann N Y Acad Sci. 2000;902:39-51; discussion 51-32.
46. Jones PL, Crack J, Rabinovitch M. Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J Cell Biol. 1997;139(1):279-293.
47. Banyard J, Anand-Apte B, Symons M, Zetter BR. Motility and invasion are differentially modulated by Rho family GTPases. Oncogene. 2000;19(4):580-591.
48. Grinnell F. Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol. 2000;10(9):362-365.
49. Kojima N, Sato M, Imai K, Miura M, Matano Y, Senoo H. Hepatic stellate cells (vitamin A-storing cells) change their cytoskeleton structure by extracellular matrix components through a signal transduction system. Histochem Cell Biol. 1998;110(2):121-128.
50. Wozniak MA, Desai R, Solski PA, Der CJ, Keely PJ. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol. 2003;163(3):583-595.
51. Kuzuya M, Satake S, Ramos MA, Kanda S, Koike T, Yoshino K, Ikeda S, Iguchi A. Induction of apoptotic cell death in vascular endothelial cells cultured in three-dimensional collagen lattice. Exp Cell Res. 1999;248(2):498-508.
52. Fujisaki H, Hattori S. Keratinocyte apoptosis on type I collagen gel caused by lack of laminin 5/10/11 deposition and Akt signaling. Exp Cell Res. 2002;280(2):255-269.
53. Bennett JS, Vilaire G. Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest. 1979;64(5):1393-1401.
54. Marlin SD, Springer TA. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell. 1987;51(5):813-819.
55. Parise LV, Phillips DR. Fibronectin-binding properties of the purified platelet glycoprotein IIb-IIIa complex. J Biol Chem. 1986;261(30):14011-14017.
56. Schwartz MA, Ginsberg MH. Networks and crosstalk: integrin signalling spreads. Nat Cell Biol. 2002;4(4):E65-68.
57. Pozzi A, Zent R. Integrins: sensors of extracellular matrix and modulators of cell function. Nephron Exp Nephrol. 2003;94(3):e77-84.
58. van der Flier A, Sonnenberg A. Function and interactions of integrins. Cell Tissue Res. 2001;305(3):285-298.
59. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673-687.
60. Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006;20(7):811-827.
61. Ginsberg MH, Partridge A, Shattil SJ. Integrin regulation. Curr Opin Cell Biol. 2005;17(5):509-516.
62. Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619-647.
63. Lo SH. Focal adhesions: what's new inside. Dev Biol. 2006;294(2):280-291.
64. Calderwood DA, Shattil SJ, Ginsberg MH. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem. 2000;275(30):22607-22610.
65. Delon I, Brown NH. Integrins and the actin cytoskeleton. Curr Opin Cell Biol. 2007;19(1):43-50.
66. Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct. 2007;36:451-477.
67. Vicente-Manzanares M, Webb DJ, Horwitz AR. Cell migration at a glance. J Cell Sci. 2005;118(Pt 21):4917-4919.
68. Rottner K, Behrendt B, Small JV, Wehland J. VASP dynamics during lamellipodia protrusion. Nat Cell Biol. 1999;1(5):321-322.
69. Machesky LM, Insall RH. Signaling to actin dynamics. J Cell Biol. 1999;146(2):267-272.
70. Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J. 2000;348 Pt 2:241-255.
71. Clark EA, King WG, Brugge JS, Symons M, Hynes RO. Integrin-mediated signals regulated by members of the rho family of GTPases. J Cell Biol. 1998;142(2):573-586.
72. Small JV. Lamellipodia architecture: actin filament turnover and the lateral flow of actin filaments during motility. Semin Cell Biol. 1994;5(3):157-163.
73. Stossel TP. On the crawling of animal cells. Science. 1993;260(5111):1086-1094.
74. Zigmond SH. Signal transduction and actin filament organization. Curr Opin Cell Biol. 1996;8(1):66-73.
75. Van Aelst L, D'Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997;11(18):2295-2322.
76. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998;279(5350):509-514.
77. Burridge K, Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol. 1996;12:463-518.
78. Schwartz MA, Shattil SJ. Signaling networks linking integrins and rho family GTPases. Trends Biochem Sci. 2000;25(8):388-391.
79. Pollard TD, Blanchoin L, Mullins RD. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct. 2000;29:545-576.
80. Ridley AJ. Rho GTPases and cell migration. J Cell Sci. 2001;114(Pt 15):2713-2722.
81. McDaniel DP, Shaw GA, Elliott JT, Bhadriraju K, Meuse C, Chung KH, Plant AL. The stiffness of collagen fibrils influences vascular smooth muscle cell phenotype. Biophys J. 2007;92(5):1759-1769.
82. Sato K, Hattori S, Irie S, Kawashima S. Spike formation by fibroblasts adhering to fibrillar collagen I gel. Cell Struct Funct. 2003;28(4):229-241.
83. dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev. 2003;83(2):433-473.
84. Elliott JT, Woodward JT, Langenbach KJ, Tona A, Jones PL, Plant AL. Vascular smooth muscle cell response on thin films of collagen. Matrix Biol. 2005;24(7):489-502.
85. Hotchin NA, Hall A. The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases. J Cell Biol. 1995;131(6 Pt 2):1857-1865.
86. Pelham RJ, Jr., Wang Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A. 1997;94(25):13661-13665.
87. Wang YK, Wang YH, Wang CZ, Sung JM, Chiu WT, Lin SH, Chang YH, Tang MJ. Rigidity of collagen fibrils controls collagen gel-induced down-regulation of focal adhesion complex proteins mediated by alpha2beta1 integrin. J Biol Chem. 2003;278(24):21886-21892.
88. Kirchner J, Kam Z, Tzur G, Bershadsky AD, Geiger B. Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. J Cell Sci. 2003;116(Pt 6):975-986.
89. Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci. 2003;116(Pt 8):1409-1416.
90. Chen CN, Li YS, Yeh YT, Lee PL, Usami S, Chien S, Chiu JJ. Synergistic roles of platelet-derived growth factor-BB and interleukin-1beta in phenotypic modulation of human aortic smooth muscle cells. Proc Natl Acad Sci U S A. 2006;103(8):2665-2670.
91. Furmaniak-Kazmierczak E, Crawley SW, Carter RL, Maurice DH, Cote GP. Formation of extracellular matrix-digesting invadopodia by primary aortic smooth muscle cells. Circ Res. 2007;100(9):1328-1336.
92. Heimli H, Kahler H, Endresen MJ, Henriksen T, Lyberg T. A new method for isolation of smooth muscle cells from human umbilical cord arteries. Scand J Clin Lab Invest. 1997;57(1):21-29.
93. Kenagy RD, Hart CE, Stetler-Stevenson WG, Clowes AW. Primate smooth muscle cell migration from aortic explants is mediated by endogenous platelet-derived growth factor and basic fibroblast growth factor acting through matrix metalloproteinases 2 and 9. Circulation. 1997;96(10):3555-3560.
94. McMurray HF, Parrott DP, Bowyer DE. A standardised method of culturing aortic explants, suitable for the study of factors affecting the phenotypic modulation, migration and proliferation of aortic smooth muscle cells. Atherosclerosis. 1991;86(2-3):227-237.