簡易檢索 / 詳目顯示

研究生: 王麒傑
Wang, Chi-Jie
論文名稱: 非真空製程合成多元銅鋅錫硒相關光伏材料及熱處理平衡機制、光電性質探討
Cu2ZnSnSe4 based Multicomponent photovoltaic material synthesis by nonvacuum method and Kinectic equilibrium mechanism in selenization process as well as optoelectronic properties
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 251
中文關鍵詞: 聚醚胺反應機制缺陷性質銅鋅錫硒熱平衡硒化光電元件
外文關鍵詞: Polyetheramine, Reaction mechanism, Defect chemistry, Cu2ZnSnSe4, thermal equlibrium, Selenization mechanism, Optoelectronic device
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們提出了以低成本,大量生產及可塗佈的溶液合成方法來合成銅鋅錫硒, 硒化銅銦鎵, 銅鋅錫硫及硫化錫為基礎的光伏材料,並針對反應機制,如晶體結構,薄膜組成,表面形態,光電性質進行探討。
    我們開發了使用螯合溶劑聚醚胺,利用溶劑熱回流技術來合成各種多元無機奈米材料,其原料為元素粉末,具有低成本的優點,不須額外添加分散劑,為單一製程,其在兩端的兩個胺基鍵合部位提供了足夠的反應能力,結構中間連續的環氧鏈提供了乳化的作用,使其非常適合於油墨印刷中使用。
    對於四元材料CZTSe和CIGSe,我們合成純相CZTSe納米顆粒約為20-24奈米,具有1.42電子伏特的能隙和良好的結晶度,組成為銅窮,鋅富。也成功合成了CIGS奈米顆粒,直徑均在28-46納米範圍內,薄膜組成為銅:銦:鎵:硒= 26.03:15.48:11:48時,能隙約為1.1eV,位於CuIn0.7Ga0.3Se2太陽能電池具有最高能量轉換效率(> 20%)的範圍內。然後,我們研究了根據不同的溶劑其對表面型態的影響,聚醚胺和異佛爾酮二胺的CZTSe納米粒子,其分子結構不同,如胺基團和分子大小,反應性和螯合能力。我們發現,聚醚胺合成具有更為銅窮和富Zn的CZTSe顆粒,更為平坦的表面及球狀顆粒。
    由此可知溶液的合成受溶劑的螯合能力很大的影響,因此基於溶液酸鹼值的二元金屬–胺基錯合物的反應機制有了更進一步研究。
    我們記錄加入四元材料前後的PH值變化及探討個別元素與之的關聯,來代表元素在聚醚胺中的反應,並探討溫度的效應,最後推導出元素間的氧化還原反應以及CZTSe反應機制。
    未經加熱時PH值隨著反應時間的增加而減少,表示金屬與有機溶劑的反應為路易士酸鹼反應,我們可發現四元相 PH值的曲線與銅和鋅的PH曲線非常相似,且PH值皆隨反應時間階段式的變化,這證明CZTSe形成機制是依賴於時間。
    加熱後,PH的增加表明還原機制支配CZTSe反應.我們然後比較CZTSe反應的PH值 - 時間曲線之前和加熱之後。首先,加熱後的PH值比以前要高得多,第二,PH值 - 時間曲線梯度加熱後變小,表示反應由金屬-胺錯合物穩定性控制。
    為了進一步探討PH值和金屬錯合物形成機制之間的關係,我們以PH最大值和最小值的差的和平均值分別代表它代表金屬在聚醚胺中的反應能力及穩定性。
    其中穩定性差異越大的元素將會首先反應,代表二元相的反應路徑。因此,反應性高的CuSe將首先出現,CuSe及SnSe由於穩定性差異大,導致形成Cu2SnSe3。最後反應形成CZTSe。
    據我們所知,CZTSe太陽能電池效率仍比CIGS低了許多,這是由於開路電壓損失引起,由於組成偏離劑量比及不均勻所造成的雜質和相關的高缺陷密度引起的。
    我們提供了兩個新的方法來克服這些問題.首先,我們直接通過改變前驅物溶液濃度來控制中間相然後再硫化得到完整CTS薄膜。具有良好表面型態,空穴濃度5.23×1017cm-3,遷移率14.2cm2/V-s時,能隙在1.35電子伏特,這是非常適合用於薄膜太陽能電池應用。
    值得一提的是我們的實驗合成是在非平衡狀態下,我們證實在此一前驅物狀態下,有利於之後的均勻相變化。由此我們Cu2SnS3為有偏序結構的tetragonal晶體結構,但比規律結構monoclinic更好的電性。
    第二,我們通過改變前驅物的銅/錫比和由低溫光致發光來探討改變組成所造成的缺陷性質,其依據能帶與缺陷位之間的載子轉移機制(BI transition)。我們發現在非計量組成下有最大的缺陷發光強度和偏移,尤其是在銅窮的狀態下,我們得到計量比的組成及沒有缺陷峰的存在。這代表在銅窮狀態銅/錫比為1.4的樣品呈現最高遷移率和最低載流子濃度,而銅/錫比2,1.8和1.2具有較高的載流子濃度,如CuSn和VCu。
    根據我們的研究,非平衡相非常適合用於進一步退火。我們對CZTSe合成 3小時的樣品進行硒化,中間相由CuSe2,ZnSe,SnSe組成,熱處理後沒有任何其他二次相存在,CZTSe薄膜顯示平坦和更緊湊的結構。
    為了實現這個目標,我們設計了單一個區域的結構但具有兩個溫度區來控制硒化處理的退火爐。以這種方式,對於硒氣氛,做為高效反應源,以硒粉溫度來調控;膜固化及相反應所需的熱能,以基板溫度表示;在相變與再結晶基底溫度和原子遷移方面,我們以退火時間表示。
    我們提出了長晶與相轉變動態平衡的機制,該方法描述了二元相晶粒生長和轉化以及CZTSe晶粒生長是同時發生且互相競爭的。
    因此,銅缺乏,鋅豐富的組成,平坦及均勻的表面型態只有在所有的二元相和CZTSe反應速度達到平衡時發生,硒粉溫度為500℃,基板溫度550℃,熱處理75分鐘。CZTSe具有銅/鋅+錫= 0.91,鋅/錫= 1.12的組成比例,對應於最佳CZTSe太陽能電池。 UV-VIS測量結果表明,在平衡狀態下,我們獲得能隙1.45eV,在合適的太陽光譜範圍。最後霍爾測量還顯示4.25×1017載流子濃度,電洞遷移率41.0941cm2/Vs,適合用於以P-N接面為基礎的光伏應用。
    我們進一步製作CZTSe MSM光偵測器,並探討其光響應與表面形態、組成及電性的關係。我們也發現當硒化達到平衡時,硒粉溫度為500℃,基板溫度550℃,熱處理75分鐘具有最高的光響應,高於其他參數將近兩個order,證實了硒化製程穩定性對光電性質有很大的影響。
    最後,我們比較了傳統熱處理及快速熱退火的差異並製作太陽能電池元件,由先前雙軌平衡探討可發現硒粉含量對相轉變和顆粒分佈有很大的影響,因此我們以550℃,5min硒粉1g,膜厚約5μm的條件下得到開路電壓580mV,閉路電流5.1mA/cm2,效率為1.06%。我們並發現在快速熱退火下,長晶與相轉變之間的平衡不易達成,故組成為Cu/(Zn+Sn)=1.19,Zn/Sn=1.14且表面較不均勻,這符合先前所述機制。
    以上實驗證實我們的聚醚胺製程具有良好潛力來發展低成本,簡易及大面積的多元半導體奈米墨水。

    In this essay, the CZTSe、CIGSe、CTS(e) and SnS photovoltaic material based synthesis process、reaction mechanism 、 film properties such as crystal structure、film composition、morphology、optoelectronic properties were fully investigated. We developed a one-step method for the synthesis of well-dispersed multicomponent inorganic semiconductor nanoparticles from elemental powders using a solvent-thermal reflux technique based on chelating solvent polyetheramine, providing two NH2 bonding sites at the ends as well as long, continuous epoxy chains in the center, making it ideally suited to the formation of CZTSe related material for use in ink printing.
    For quaternary material CZTSe and CIGSe, we produced pure phase CZTSe nanoparticles approximately 20-24 nm in size with a band gap of 1.42 eV and good crystallinity in a Cu poor, Zn rich composition. CIGS nanoparticles were also successfully synthesized. The as-synthesized of CIGS nanoparticles with diameters were in the range of 28-46 nm with the chemical composition ratios Cu:In:Ga:Se=26.03:15.48:11:48, the optical band gap was approximately 1.1eV,located in the range of the CuIn0.7Ga0.3Se2 solar cells with the highest energy conversion efficiency (>20%).
    We then investigated morphology of the CZTSe nanoparticles depending on different solvents polyetheramine and isophorondiamine, which are different in molecular structure such as amine group and molecule size,critical to reactivity and chelating ability to form metal-solvent chelate complexes. We found that the polyetheramine-based process produced particles with far more Cu-poor and Zn-rich composition CZTSe phases, a smoother and closed packed morphology, and a more spherical crystal shape.
    We examined reaction mechanism firstly by design a redox reactions by recording the PH values of Cu, Zn, Sn, Se elements in the polyetheramine before and after the addition of thermal energy and compare with the whole quaternary phases solution reaction curve. Without heating, the PH value increased with reaction time. The PH curve was simply a reversal of the PH-time curves of Cu and Zn, which presented a stepwise reaction rate very similar to that of CZTSe. This proves that the CZTSe formation mechanism is time-dependent and stepwise. After heating, the increase in PH over time indicates that the reaction involves reduction.
    To further characterize the relationship between PH values and metal complexes formation mechanism, we characterized the PH variation by max and min values interval and average calculation, which represent the indication of the reactivity of metal in polyetheramine, the reaction species most stable existing region.Thus, highly reactive Cu-Se would appear first, and Zn-Se would form later due to its proximity in the stability sequence. The Cu-Se would react with Sn-Se due to a large difference in stability, resulting in the formation of Cu2SnSe3. Finally, Zn-Se would react with Cu-Se-Sn to form CZTSe.
    To our knowledge, CZTSe related device efficiency is still lower than CIGS based device, it is due to the fact that Voc loss induced poor efficiency due to the second phase impurities and related high defect density induced poor electrical properties.
    We provide two novel methods to overcome these issues. First, we control the phase reactivity directly by synthesizing lower molar concentration of CTS precursor ink then under sulfurization, and we got pure phase CTS and has film electrical properties of hole concentration 5.23×1017cm-3and mobility 14.2cm2/V-s, the optical band-gap energy was measured at 1.35 eV, which are very suitable for thin-film solar cell applications. To be mentioned that our experiment used indicated that the noneqilibrium condition of precursor is beneficial to uniform phase transformation and related electrical properties. As a result, our Cu2SnS3 has crystal structure tetragonal for partial order structure but has superior electrical properties than order monoclinic structure.
    Second, we tuned the precursor composition by changing Cu/Sn ratio and convinced the existence and species of defects by low temperature photoluminescence, which obeying the band to impurity transition, indicating an existence of defect based on nonstoichiometric composition. And under Cu poor condition we have shallow defects in low concentration, verifying that Cu poor condition for precursor is easier to get stoichiometric composition product. The sample with a Cu/Sn ratio of 1.4 presented the highest mobility and lowest carrier concentration, whereas samples prepared with Cu/Sn ratios of2, 1.8, and 1.2 have higher carrier concentration due to higher defect density such as CuSn and Vcu.
    According our studies, nonequilibrium phases are well suited for further anneal. We selenized CZTSe 3hr sample, composed of intermediate phase such as CuSe2, ZnSe, SnSe. A completely pure CZTSe phase was formed without any other secondary phase existed after selenization. The CZTSe thin films show dense and more compact structure, with grain size about 1-2um.
    To accomplish this goal, we designed a one zone structure anneal furnace with two zone temperature control to monitor the selenization process. In this way, efficient reaction source for Se atmosphere, in terms of Se powder temperature; film curing required thermal energy, in terms of substrate temperature and atoms migration for phase transformation and recrystallization, in terms of anneal time.
    As a result, we would change the extent of binary phases grain growth and phase transformation into CZTSe. We then proposed a novel bi-path selenization process which describe the binary phases grain growth and transformation as well as CZTSe grain growth. The Cu poor, Zn rich composition with flat, closed pack morphology only occurred while all the binary phases and CZTSe grain reaction rate reached a equilibrium state at Se powder temperature 500℃ and substrate temperature 550℃, 75min. And we got CZTSe film with elemental composition Cu/(Zn+Sn)=0.91, Zn/Sn=1.12, corresponding to optimal CZTSe solar cell composition. UV-VIS measurement shown that at equilibrium state we obtained bandgap 1.45eV, lied in the suitable solar spectrum. Finally Hall measurement also shown a carrier concentration of 4.25×1017, mobility 41.091cm2/Vs, excellent for P-N junction based photovoltaic application.
    Then we fabricated CZTSe based MSM photodetector to investigate the relationship between photosensitivity and film morphology, composition and electrical properties. And we found that photosensitivity is nearly two order larger than others for selenization equilibrium state at Se powder temperature 500℃ and substrate temperature 550℃, 75min. Finally, we compared the difference between thermal anneal and rapid thermal anneal. We found that under rapid thermal anneal we have more Cu rich composition Cu/(Zn+Sn)=1.19, Zn/Sn=1.14 and less uniform morphology. This is due to the reason that rapid reaction induced nonequlibrium selenization.
    These indicated that stable selenization process has great impact on optoelectronic properties. Finally we fabricated solar cell based on 550℃5min Se powder 1g,film thickness 5μm by RTA, getting Voc 580mV,Isc, and efficiency 1.06%.
    In this Dissertation, we proved that polyetheramine based process has great potential for low cost, facile and large area multicomponent nanoink.

    Contents Abstract...................................................................................................................................I (in Chinese) Abstract................................................................................................................................IV (in English) 誌謝....................................................................................................................................VII Contents………………………………………………………………………………….VIII Table Captions....................................................................................................................XII Figure Captions.................................................................................................................XIV CHAPTER 1Introduction 1.1 Trend of Thin Film Solar Cell……………………………………………………1 1.2 Quaternary phase Photovoltaic Material…………………………………………5 1.2.1 CIGS Photovoltaic Material……………………………………............5 1.2.2 Development of CIGS…………………………………………………5 1.2.3 Composition effect on CIGS optoelectronic properties………………..6 1.2.4 CZTS(e) Photovoltaic Material………………………………………..7 1.2.5 Development of CZTSe………………………………………………..7 1.2.6 Composition and phase stability related properties of CZTS………….8 1.2.7 Copper based defect mechanism and optoelectronic properties……….9 1.3 CTS(e) Photovoltaic Material……………………………………………...........27 1.4 Solar Cell Physics 1.4.1 Introduction……………………………………………………...........27 1.4.2 I-V diode model and solar cell parameter…………………………….27 1.4.3 P-N junction theory of solar cell………………………………...........28 1.4.4 Device Structure………………………………………………...........29 1.5 Motivation………………………………………………………………………33 1.6 Reference in Chapter 1………………………………………………………….34 CHAPTER 2 Fabrication Techniques and Experiment Procedures 2.1 Introduction……………………………………………………………………..40 2.2 Vacuum process…………………………………………………………………42 2.3 Nonvacuum Process…………………………………………………………….42 2.4 Polyetheramine based Solution Process…………………………………...........44 2.5Anneal Process………………………………………………………………….50 2.6Analysis Techniques 2.6.1 XRD…………………………………………………………………..52 2.6.2 Raman…………………………………………………………...........52 2.6.3 SEM…………………………………………………………………..52 2.6.4 Hall effect measurement………………………………………...........52 2.6.5 Anneal furnace……………………………………………………….54 2.6.6 Photoresponce Characterization………………………………...........54 2.6.7 Solar I-V measurement……………………………………………….55 2.7 Reference in Chapter 2…………………………………………………...........62 CHAPTER3 Quaternary phase Semiconductor nanocrystal Cu2ZnSnSe4 Synthesis and Characterization 3.1CZTSe solution method by polyetheramine and solvent effect 3.1.1 Introduction………………………………………………….……………64 3.1.2Experiment Procedures…………...……………..………….……………..66 3.1.3 Phase characterization and solvent dependent Morphology……………...67 3.1.4 Conclusion………………………………………………………………...70 3.2 Thermoldynamic mechanism of CZTSe solution process 3.2.1 Introduction…………………………………………………………...........73 3.2.2 Experiment Procedures……………………………………………………..74 3.2.3 Phase evolution characterization…………………………………………...75 3.2.4 Thermal stability characterization by solution basicity…………………….83 3.2.5 Characterization of morphology and crystal transformation process............91 3.2.6 Conclusion………………………………………………………………….98 3.2.7 Reference in Chapter 3...…………………………………………………...99 CHAPTER 4Quaternary phase Semiconductor nanocrystal CuIn(1-x)GaxSe2synthesis and Characterization 4.1 Synthesis and Characterization of CIGS nanoparticles 4.1.1 Introduction……………………………………………………………108 4.1.2 Experiment Procedures…………………………………………...........109 4.1.3 Characterization of CIGS nanoparticles synthesized by polyetheramine…………………………………………………...........110 4.1.4 Conclusion……………………………………………………………..111 4.2 Time based CuIn(1-x)GaxSe2 reaction mechanism 4.2.1 Introduction……………………………………………………………114 4.2.2 Experiment Procedures…………………………………………...........115 4.2.3 Phase characterization of the CIGS nanoparticles……………………..115 4.2.4 Morphology characterization and crystal transformation process……..119 4.2.5 Optical properties and Electrical properties……………………...........122 4.2.6 Conclusion……………………………………………………………..124 4.2.7 Reference in Chapter 4...………………………………………………125 CHAPTER 5Ternary phase semiconductor nanocrystal Cu2SnSe3 synthesis andcharacterization 5.1 Nonstoichiometric composition induced defect luminescence 5.1.1Introduction………………………………………………………………..130 5.1.2 Experiment Procedures……………………………………………………131 5.1.3 Cu/Sn ratio effect on Structure and morphology………………………….132 5.1.4 Electrical properties and defect characterization………………………….137 5.1.5 Optical properties…………………………………………………………140 5.1.6 Conclusion…………………………………………………………...........143 5.2 Interdiffusion based Cu2SnSe3 morphology evolution 5.2.1 Introduction……………………………………………………………….144 5.2.2 Experiment Procedures……………………………………………………145 5.2.3Phase and structure characterization………………………………...........145 5.2.4 Morphology evolution and optical properties…………………………….149 5.2.5 Conclusion…………………………………………………………….......156 5.3Reference in Chapter 5…..………………………………………...………..157 CHAPTER 6Ternary phase semiconductor nanocrystal Cu2SnS3 synthesis and Characterization 6.1 Control of Cu2SnS3 intermediate phases and sulfurization based on precursor solution concentration 6.1.1 Introduction……………………………………………………………162 6.1.2 Experiment Procedures…………………………………………...........163 6.1.3 Characterization of Cu-Sn-S precursor nanoinks………………...........164 6.1.4 Characterization of CTS films following sulfurization………………..167 6.1.5 Cu2SnS3 sulfurization mechanism……………………………………..171 6.1.6 Conclusion……………………………………………………………..172 6.1.7 Reference in Chapter 6…………………………………………...........173 CHAPTER 7Binary phase semiconductor nanocrystal SnS synthesis andcharacterization 7.1 Temperature induced crystal structure transformation 7.1.1 Introduction……………………………………………………………175 7.1.2 Experiment Procedures…………………………………………...........176 7.1.3 SnS Crystal orientation transformation based on temperature effect……………………………………………………………...........176 7.1.4 Morphology evolution and optical properties………………………………………………………………180 7.1.5 Conclusion……………………………………………………………..185 7.1.6 Reference in Chapter 7…………………………………………...........186 CHAPTER 8 Two step Cu2ZnSnSe4 precursor nanoink selenization Process 8.1 Bi path based atom rearrangement and grain growth 8.1.1 Introduction……………………………………………………………188 8.1.2 Experiment Procedure…………………………………………………189 8.1.3 Temperature effect on phase transformation and morphology………..192 8.1.4 Time effect on phase transformation and morphology………………..202 8.1.5 Phase transformation and Morphology evolution mechanism…..........................................................................................206 8.1.6 Optoelectronic properties……………………………………….......... 210 8.1.7 Conclusion……………………………………………………………..214 8.2 CZTSe based MSM photoresponse measurement 8.2.1 Introduction……………………………………………………………215 8.2.2 Experiment procedure…………………………………………………216 8.2.3 CZTSe based MSM photosensitivity measurement…………………...216 8.2.4 Conclusion……………………………………………………………..222 8.3 CZTSe based solar cell with RTA process based on Se powder contents 8.3.1 Introduction……………………………………………………………...223 8.3.2 Experiment procedure…………………………………………………...224 8.3.3 CZTSe film characterization based on Se powder contents……………..226 8.3.4 Conclusion……………………………………………………………….239 8.4 Reference in chapter 8...……………………………………...……………240 CHAPTER 9 Conclusion and Future Work 9.1 Conslusion…………………………………………………………………...…244 9.2 Future work 9.2.1 Material engineering…………………………………………….............245 9.2.2 Cu2ZnSnSe4 based Photoresponce charaterization based on charge transport and defect properties……………………………..................................246 9.2.3 Cu2ZnSnS4 based Solar cell………………………………......................247 Publication List Vita

    1.6 Reference in Chapter 1
    1. S. Kurtz, J. Geisz,”Multijunction solar cells for conversion of concentrated sunlight to electricity”, Opt. Express 18, A73-A78, (2010)
    2. N. Tansu, J. Y. Yeh, L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition” ,J. Phys.-Condens. Mat.16, S3277, (2004)
    3. N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition” ,IEEE J. Sel. Top Quant. 9, 1220–1227 ,(2003)
    4. S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 µm GaInNAsSb lasers”, IEEE J. Sel. Top Quant. 11, 1089–1098 ,(2005)
    5. M. Wiemer, V. Sabnis, H. Yuen, “43.5% efficient lattice matched solar cells”, Proc. SPIE, 8108 ,(2011)
    6. V. S. Saji, I. H. Choi, C. W. Lee,“Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2(CIGS) solar cells” ,Sol. Energy 85, 2666–2678 ,(2011)
    7. D. B. Mitzi n, O. Gunawan, T. K. Todorov, K. Wang, S. Guha, “The path towards a high-performance solution-processed kesterite solar cell” ,Sol. Energ. Mat. Sol. C. 95, 1421–1436 ,(2011)
    8. N. Ali, A.Hussain, R.Ahmed, M.K.Wang, C.Zhao, B.UlHaq, Y.Q.Fu, “Advances in nanostructured thin film materialsforsolar cell applications”,RenewableandSustainableEnergyReviews,59 ,726–737,(2016)
    9. Dr Xiaoxi He , Dr Harry Zervos,“The rise of perovskite solar cells Perovskite Photovoltaics 2015-2025: Technologies, Markets, Players”,IDTECHEX RESEARCH REPORTS AND CONSULTANCY,(2015)
    10. Waheed A. Badawy, “ A review on solar cells from Si-single crystalsto porous materials and quantum dots,”,Journal of Advanced Research,6, 123–132,(2015)
    11. Yanqing Lai, Fangyang Liu, and Zhenghua Su, “Current status and future prospects of kesterite CZTS thin film solar cells”,Conference: Advanced Optoelectronics for Energy and Environment,(2013)
    12. Arnulf Jager-Waldau , “Progress in chalcopyrite compound semiconductor research for photovoltaic applications and transfer of results into actual solar cell production”, Solar Energy Materials & Solar Cells 95, 1509–1517 ,(2011)
    13. Kentaro Matsunaga, Takashi Komaru , Yuji Nakayama , Tomoyuki Kumeb, Yasuhiro Suzuki , “Mass-production technology for CIGS modules”, Energy Materials & Solar Cells 93, 1134–1138, (2009)
    14. K. Shoori , G. Kavei, “Copper Indium Gallium DiSelenide–CIGS Photovoltiac Solar Cell TechnologyA review ”,International Materials Physics Journal, vol. 1, No.1, 15-21, (2013)
    15.T. Markvart and L. Castaner, “Solar cells: materials and manufacture and operation”, Oxford, Elsevier Advanced Technology, (2005)
    16. Kazmerski, L.L., White, F.R., Morgan, G.K., “Thin‐film CuInSe2/CdS heterojunction solar cells”,Appl. Phys. Lett. 29, 268,(1976)
    17. Stephan Abermann, “Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells”,Solar Energy 94, 37–70, (2013)
    18. O. Lundberga, J. Lua , A. Rockettb , M. Edoffa , L. Stolt , “Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells ”, Journal of Physics and Chemistry of Solids 64 , 1499–1504,(2003)
    19. J. Hedstrom Swedish, Sweden H. Ohlsen ; M. Bodegard , A. Kylner, L. Stolt, D. Hariskos , M. Ruckh, H. W. Schock, “ZnO/CdS/Cu(In, Ga)Se2 thin film solar cells with improved performance ”,Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE ,364 - 371, (1993)
    20. Philip Jackson, Dimitrios Hariskos, Roland Wuerz, Oliver Kiowski, Andreas Bauer,Theresa Magorian Friedlmeier, and Michael Powalla, “ Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%”,physica status solidi (RRL) - Rapid Research Letters,Volume 9, Issue 1,pages 28–31, (2015)
    21. Congkang Xu,Hongwang Zhang,James Parry,Samanthe Perera,Gen Long,Hao Zeng, “ A single source three-stage evaporation approach to CIGS absorber layer for thin film solar cells ”,Solar Energy Materials&Solar Cells,117, 357–362, (2013)
    22. Sreedevi Gedi, Qian Sun, Chan-Wook Jeon , “Remarkable enhancement of the efficiency of Cu(In,Ga)Se2 solar cells by annealing the (In,Ga)2Se3 precursor layer”,Journal of Alloys and Compounds, 659,255-261, (2016)
    23. Jeha Kim, Ho-Sub Lee , Nae-Man Park , “Post-annealing effect on the reactively sputter-grown CIGS thin films and its influence to solar cell performance ”,Current Applied Physics, 14 , 63-68, (2014)
    24. Viswanathan S. Saji, Ik-Ho Choi, Chi-Woo Lee , “Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2 (CIGS) solar cells ”,Solar Energy, 85, 2666–2678, (2011)
    25. Sin-Il Gu, Hyo-Soon Shin, Dong-Hun Yeo , Youn-Woo Hong , Sahn Nahm, “Synthesis of the single phase CIGSe particle by solvothermal method for solar cell application ”,Current Applied Physics, 11 , 99-102,(2011)
    26. S.H. Mousavi, T.S. Müller, R. Karos, P.W. de Oliveira , “Faster synthesis of CIGSe nanoparticles using a modified solvothermal method”,Journal of Alloys and Compounds, 659 ,178-183, (2016)
    27. Wei-Hsiang Hsu, Hsing-I Hsiang,wYu-Lun Chang, Dah-Tong Ray, and Fu-SuYen , “Formation Mechanisms of Cu(In0.7Ga0.3)Se2 Nanocrystallites Synthesized Using Hot-Injection and Heating-Up Processes”,J. Am. Ceram. Soc., 94 ,3030–3034,(2011)
    28. Xiaogu Huang,Zhe Zhang,Bo Song,Yulin Deng,Shi Liu, “Facile solvothermal way to synthesize CuIn0.7Ga0.3S2 nanocrystals and their application in low-cost photovoltaic device”,Journal of Alloys and Compounds, 656,663-666, (2016)
    29. Guang-Xing Liang, Ping Fan, Chao-Ming Chen , Zhuang-Hao Zheng , Dong-Ping Zhang , “A promising sputtering for in situ fabrication of CIGS thin films without post-selenization ”,Journal of Alloys and Compounds ,610 , 337–340, (2014)
    30. Sun Ding, Ge Yang, Zhang Li, Xu Shengzhi, Chen Ze,Wang Ning, Liang Xuejiao, Wei Changchun, Zhao Ying,and Zhang Xiaodan, “Impact of Cu-rich growth on the Cu2ZnSnSe4 surface morphology and relatedsolar cells behavior ”,Chinese Institute of Electronics Journal of Semiconductors, Volume 37, Number 1,(2016)
    31.P. Szaniawski, P. Salome, V. Fjallstrom, T. Torndahl, U. Zimmermann, M. Edoff, “Influence of Varying Cu Content on Growth and Performance of Ga-Graded Cu(In,Ga)Se2 Solar Cells”,IEEE J. Photovolt.,5, 1775-1782, (2015)
    32.Christopher L. Exstrom, Scott A. Darveau, Andrea L. Martinez-Skinner, Matt Ingersoll, Jiri Olejnicek, Anatole Mirasano, Adam T. Haussler, James Huguenin-Love, Chad Kamler, Martin Diaz, N. J. Ianno, R. J. Soukup, “Reaction pathway insights into the solvothermal preparation of CuIn1−xGaxSe2 nanocrystalline materials”,33rd IEEE Photovolatic Specialists Conference , 1 - 6, (2008)
    33.Miguel A. Contreras1, Lorelle M. Mansfield1, Brian Egaas1, Jian Li1, Manuel Romero1,Rommel Noufi1, Eveline Rudiger-Voigt and Wolfgang Mannstadt , “Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency”,PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, 20,843–850, (2012)
    34. Jiang Liu, Da-Ming Zhuang, Ming-Jie Cao, Chen-Yue Wang, Min Xie, and Xiao-Long Li , “Preparation and Characterization of Cu(In,Ga)Se2 Thin Films by Selenization of Cu0.8Ga0.2 and In2Se3 Precursor Films ”,International Journal of Photoenergy
    Volume 2012 , 7 pages
    35.M. Gloeckler, J.R. Sites, “Efficiency limitations for wide-band-gap chalcopyrite solar cells”,Thin Solid Films, 480–481,241-245,(2005)
    36. Huanping Zhou, Wan-Ching Hsu, Hsin-Sheng Duan, Brion Bob, Wenbing Yang, Tze-Bin Song, Chia-Jung Hsu and Yang Yang , “CZTS nanocrystals: a promising approach for next generation thin film photovoltaics ”,Energy Environ. Sci., , 6,2822, (2013)
    37.Shiyou Chen, Aron Walsh, Ji-Hui Yang, X. G. Gong, Lin Sun,Ping-Xiong Yang, Jun-Hao Chu, and Su-Huai Wei,“Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloysfor thin film solar cells” ,Physical Review B, vol. 83 , (2011)
    38. D. B. Mitzi n, O. Gunawan, T. K. Todorov, K. Wang, S. Guha, “The path towards a high-performance solution-processed kesterite solar cell”,Sol. Energ. Mat. Sol. C. 95, 1421–1436,(2011)
    39. S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, K. H. Yoon,“Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process” ,Thin Solid Films 535, 52–56 (2013)
    40. O.Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, E. Mellikov ,“ Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route” ,Thin Solid Films 535, 48-51 ,(2013)
    41. W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, M. Matsumura, “Single–step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure”,Electrochim. Acta 88, 436-442, (2013)
    42. H. Wei , W. Guo, Y. Sun, Z. Yang, Y. Zhang ,“Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals ”, Mater. Lett. 64, 1424–1426,(2010).
    43. Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, S. X. Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles”,Mat. Sci. Semicon. Proc.,15, 214–217 ,(2012)
    44. M. Cao, Y. Shen, “A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles”,J. Cryst. Growth 318, 1117–1120, (2011)
    45. M. Pal, N. R. Mathews, R. S. Gonzalez, X. Mathew, “Synthesis of Cu2ZnSnS4 nanocrystals by solvothermal method” ,Thin Solid Films 535, 78–82 ,(2013)
    46. L. J. Chen, Y. J. Chuang, “Quaternary semiconductor derived and formation mechanism by non-vacuum route from solvothermal nanostructures for high-performance application”,Mater. Lett. 91, 372–375 ,(2013)
    47. S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov and D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency”, Environ. Eng. Sci. 5, 7060,(2012)
    48. M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, W. T. Lin, “Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films” ,Thin Solid Films ,544, 291–295, (2013)
    49. M. S. Park, D. H. Kim, S. J. Sung, H. J. Jo, and J. K. Kang, “Growth of Cu2ZnSnSe4Thin Films by Spin-Coating and Selenization Process” ,IEEE Nano 2011 Conference, 222-226, (2011)
    50. Y. Cao, M. S. Denny, J. Jonathan, V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles ” ,J. Am. Chem. Soc., 134, 15644–15647, (2012)
    51. Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin, J. Brugger, “Structural and optical properties of the Cu2ZnSnSe4 thin films grown by nano-ink coating and selenization”,J. Mater. Sci.-Mater. El., 24, 529-535, (2013)
    52. H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li,Z. Sun, Z. Yang and S. M. Huang,“ Growth of Cu2ZnSn(S,Se)4 thin films by a simple Eco-friendly solution route method” ,Surf. Rev. Lett.,19, 1250034 ,(2012)
    53. I. D. Olekseyuk, I. V. Dudchak, and L. V. Piskach, “Phase equilibria in the Cu2S-ZnS-SnS2 system” ,Journal of Alloys andCompounds, 368, 1-2, 135–143, (2004)
    54. I. V. Dudchak and L. V. Piskach, “Phase equilibria in the Cu2SnSe3-SnSe2-ZnSe system” J,ournal of Alloys and Compounds, 351, 1-2, 145–150, (2003)
    55. A. Nagoya, R. Asahi, R.Wahl, and G. Kresse, “Defect formationand phase stability of Cu2ZnSnS4 photovoltaic material”,Physical ReviewB, 81, 11, (2010)
    56. Xiangbo Song, Xu Ji, Ming Li,Weidong Lin, Xi Luo, and Hua ZhangHindawi , “A Review on Development Prospect of CZTS Based Thin FilmSolar Cells”,International Journal of Photoenergy Volume 2014, , 11 pages
    57.T. Unold S. Kretzschmar , J. Just ,O. Zander,B. Schubert,B. Marsen , H. W. Schock, “Correlation between composition and photovoltaic properties of Cu2ZnSnS4 thin film solar cells”,Photovoltaic Specialists Conference (PVSC), 37th IEEE, 002820 – 002823, (2011)
    58.Dong-Hau Kuo , Moges Tsega , “The investigation of CuxZnSnSe4 bulks with x = 1.4–2.2 for debating the Cu excess and Cu deficiency used in thin-film solar cells Materials ”,Research Bulletin ,49, 608–613, (2014)
    59.Manuel J. Romero, Ingrid Repins, Glenn Teeter, Miguel A. Contreras, Mowafak Al-Jassim, Rommel Noufi , “A Comparative Study of the Defect Point Physics and Luminescence of the Kesterites Cu2ZnSnS4 and Cu2ZnSnSe4 and Chalcopyrite Cu(In,Ga)Se2”,2012 IEEE Photovoltaic Specialists Conference , 3–8, (2012)
    60.Maykel Courel , J.A. Andrade-Arvizu, O. Vigil-Galan , “Loss mechanisms influence on Cu2ZnSnS4/CdS-based thin film solar cellPerformance ”,Solid-State Electronics, 111, 243–250, (2015)
    61.Ana Kanevce n, Ingrid Repins, Su-HuaiWei , “Impact of bulk properties and local secondary phases on the Cu2(Zn,Sn)Se4 solar cells open-circuit voltage ”,Solar EnergyMaterials&SolarCells,133, 119–125,(2015)
    62.K. Muska, M. Kauk, M. Grossberg, M. Altosaar, J. Raudoja, O. Volobujeva , “Influence of compositional deviations on the properties ofCu2ZnSnSe4monograin powders”,Energy Procedia, 10, 323 – 327,( 2011 )
    63. Seung Wook Shin, Jun Hee Han, Chan Yeong Park, Sae-Rok Kim, Yeon Chan Park, G.L. Agawane,A.V. Moholkar, Jae Ho Yun, Chae Hwan Jeong, Jeong Yong Lee, Jin Hyeok Kim , “A facile and low cost synthesis of earth abundant element Cu2ZnSnS4(CZTS)nanocrystals: Effect of Cu concentrations”,Journal of Alloys and Compounds, 541, 192–197, (2012)
    64. Tsuyoshi Maeda, Satoshi Nakamura, and Takahiro Wada, “First Principles Calculations of Defect Formation in In-Free Photovoltaic Semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4”,Japanese Journal of Applied Physics, 50, (2011)
    65. Shiyou Chen, Ji-Hui Yang, X. G. Gong, Aron Walsh, and Su-Huai Wei , “Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 ”,PHYSICAL REVIEW ,B 81, 245204, (2010)
    66. M. Grossberg, J. Krustok, K. Timmo, M. Altosaar, “Radiative recombination in Cu2 ZnSnSe4 monograins studied by photoluminescence spectroscopy”,Thin Solid Films, 517,2489–2492, (2009)
    67.D.M.Berg,R.Djemour,L.Gütay,S.Siebentritt,P.J.Dale,X.Fontane,V.I.Roca, A.P.Rodriguez, “RamananalysisofmonoclinicCu2SnS3 thin films ”,Appl.Phys. Lett. 100,192103, (2012)
    68.S.A.Vanalakar,G.L.Agawane,S.W.Shin,H.S.Yang,P.S.Patil,J.Y.Kim,J.H.Kim, “ Non-vacuum mechano chemical route to synthesis Cu2SnS3 nano-ink for solar cell applications ”,ActaMater.,85, 314–321, (2015)
    69.S.A.Vanalakar, G.L.Agawane a, A.S.Kamble , C.W.Hong , P.S.Patil , J.H.Kim , “Fabrication of Cu2SnS3 thin film solar cells using pulsed laser deposition technique ”,Solar EnergyMaterials&SolarCells,138, 1–8, (2015)
    70.Meena Dhankhar,OmPalSingh,V.N.Singh , “Physical principles of losses in thin film solar cells and efficiency enhancement methods”,Renewable and Sustainable Energy Reviews,40 , 214–223, (2014)
    71. Waldo J.E. Beek and René A.J. Janssen, “Hybrid Polymer-Inorganic Photovoltaic Cells”,Hybrid Nanocomposites for Nanotechnology,321-385,(2009)
    72.S. Y. Kuo ; Dept. of Electron. Eng., Chang Gung Univ., Taoyuan, Taiwan ; J. F. Yang ; F. I. Lai ; C. J. Lin, “Growth of Cu2ZnSnSe4 Thin Films by Selenization of Magnetron Sputtered Precursors for Solar Cells” ,Photovoltaic Specialists Conference (PVSC), 38th IEEE, 002688 – 002691,(2012)

    2.7 Reference in Chapter 2
    1. Yanqing Lai, Fangyang Liu, and Zhenghua Su, “Current status and future prospects of kesterite CZTS thin film solar cells”,Conference: Advanced Optoelectronics for Energy and Environment,(2013)
    2. N. Ali A.Hussain, R.Ahmed, M.K.Wang, C.Zhao , B.UlHaq, Y.Q.Fu , “Advancesinnanostructuredthin film materialsforsolar cell applications”,RenewableandSustainableEnergyReviews,59, 726–737,(2016)
    3. Xiangbo Song, Xu Ji, Ming Li,Weidong Lin, Xi Luo, and Hua Zhang Hindawi, “A Review on Development Prospect of CZTS Based Thin FilmSolar Cells”,International Journal of Photoenergy ,Volume 2014, 11 pages
    4. Huanping Zhou, Wan-Ching Hsu, Hsin-Sheng Duan, Brion Bob, Wenbing Yang,Tze-Bin Song, Chia-Jung Hsu and Yang Yang , “CZTS nanocrystals: a promising approach for next generation thin film photovoltaics”,Energy Environ. Sci., 6,2822, (2013)
    5. Stephan Abermann , “Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells”,Solar Energy ,94 ,37–70, (2013)
    6. Yan-Fang Du,Wen-HuiZhou,Yan-LiZhou,Peng-WeiLi,Jun-QiFan,Jing-JingHe,Si-Xin Wu,“Solvothermalsynthesisandcharacterizationofquaternary Cu2ZnSnSe4 particles”,Materials Science in Semiconductor Processing, 15, 2, 214–217, (2012)
    7. S.H. Mousavi, T.S. Müller, R. Karos, P.W. de Oliveira , “Faster synthesis of CIGS nanoparticles using a modified solvothermal method”,Journal of Alloys and Compounds, 659, 178-183, (2016)
    8. Yanyan Cao, Michael S. Denny, Jr., Jonathan V. Caspar, William E. Farneth, Qijie Guo, Alex S. Ionkin, Lynda K. Johnson, Meijun Lu, Irina Malajovich, Daniela Radu, H. David Rosenfeld , Kaushik Roy Choudhury, and Wei Wu, “Cells Prepared from Binary and Ternary Nanoparticles”,J. Am. Chem. Soc. , 134, (38), 15644–15647, (2012)
    9.Zhen Jia, Qinmiao Chen, Jin Chen, Tingting Wang, Zhenqing Lia and Xiaoming Dou, “The photovoltaic properties of novel narrow band gap Cu2SnS3 films prepared by a spray pyrolysis Method ”,RSC Adv., 5, 28885, (2015)
    10. Gerardo Larramona, Stéphane Bourdais, Alain Jacob, Christophe Choné, Takuma Muto, Yan Cuccaro,Bruno Delatouche, Camille Moisan, Daniel Péré, and Gilles Dennler , “8.6% Efficient CZTSSe Solar Cells Sprayed from Water−Ethanol CZTS Colloidal Solutions”,Japanese Journal of Applied Physics ,50 , 01BE10,(2011)
    11. Van Driessche, I., Penneman, G., Abell, J.S., Bruneel, E., Hoste, S., “Chemical approach to the deposition of textured CeO2 buffer layers based on sol gel dip coating”,Mater. Sci. Forum 426 (4), 3517, 2003
    12. Texas A & M University,Basic X-ray Powder Diffraction (XRPD), X-ray Diffraction Laboratory
    13. 黃哲瑄,以濺鍍/無毒硒化製程製作銅銦鎵硒薄膜太陽能電池, 國立交通大學照明與能源光電研究所,(2010)
    14. Michael Dunlap,Dr. J. E. Adaskaveg,Introduction to the Scanning Electron Microscope Theory, Practice, & Procedures
    15. G. Bradley Armen ,Hall Effect Experiment
    16. Kuang-Hsiang Liaoa, Cherng-Yuh Sua, Yu-Ting Dinga, Horng-Show Koo , “Microstructural characterization of CIGS formation using different selenization ”,Processes Applied Surface Science ,270 , 139– 144, (2013)
    17. Jie Ge , Shaohua Zuo , Jinchun Jiang , Jianhua Ma , Lihong Yang , Pingxiong Yang , Junhao Chu J. Ge et al. , “Investigation of Se supply for the growth of Cu2ZnSn(SxSe1−x)4 (x ≈ 0.02–0.05)thin films for photovoltaics”,Applied Surface Science, 258, 7844–7848, (2012)
    18. Bahaa E. A. Saleh, Malvin Carl Teich, “SEMICONDUCTOR PHOTON DETECTORS Fundamentals of Photonics” ,John Wiley & Sons, Inc., New York, USA ,(1991)
    19.Christiana Honsberg and Stuart Bowden ,Photovoltaic Education Network

    3.3 Reference in chapter 3
    1. S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity”,Opt.Express18(S1), A73–A78,(2010)
    2. N. Tansu, J. Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and1300–1400 nm InGaAsN quantum well lasers obtained by metal–organic chemical vapour deposition” ,J. Phys.-Condens. Matter 16(31), S3277–S3318,(2004)
    3. N. Tansu, J. Y. Yeh, and L. J. Mawst, “High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantumwell lasers by metal–organic chemical vapor deposition”,IEEE J. Sel. Top Quant. 9(5), 1220–1227, (2003)
    4. S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5μm GaInNAsSb lasers” ,IEEE J. Sel. Top Quant. 11(5), 1089–1098, (2005)
    5. M. Wiemer, V. Sabnis, and H. Yuen, “43.5% efficient lattice matched solar cells” ,Proc. SPIE 8108, 810804,(2011)
    6. M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, and N. Muthukumarasamy, “Effect ofannealing on the structural properties of electron beam deposited CIGS thin films” ,Thin Solid Films 516(20),6848–6852 ,(2008)
    7. V. S. Saji, I. H. Choi, and C. W. Lee, “Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2(CIGS)solar cells” ,Sol. Energy 85(11), 2666–2678, (2011)
    8. D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, “The path towards a high-performancesolution-processed kesterite solar cell”,Sol. Energy Mater. Sol. Cells 95(6), 1421–1436, (2011)
    9. S. Jung, J. Gwak, J. H. Yun, S. J. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. S. Shin, and K. H. Yoon,“Cu2ZnSnSe4 th 10. O. Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, and E. Mellikov, “Synthesis and characterisation ofCu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route” ,Thin Solid Films 535, 48–51 ,(2013)
    11.W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, and M. Matsumura, “Single–step electrodeposition of amicrocrystalline Cu2ZnSnSe4 thin film with a kesterite structure” ,Electrochim. Acta 88, 436–442,(2013)
    12.H. Wei, W. Guo, Y. Sun, Z. Yang, and Y. Zhang, “Hot-injection synthesis and characterization of quaternaryCu2ZnSnSe4 nanocrystals”,Mater.Lett.64(13), 1424–1426, (2010)
    13.Y. F. Du, W. H. Zhoun, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis andcharacterization of quaternary Cu2ZnSnSe4 particles”,Mater. Sci. Semicond. Process.15(2), 214–217 ,(2012)
    14.M. Cao and Y. Shen, “A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles” ,J. Cryst.Growth 318(1), 1117–1120 ,(2011)
    15.M. Pal, N. R. Mathews, R. S. Gonzalez, and X. Mathew, “Synthesis of Cu2ZnSnS4 nanocrystals by solvothermalmethod” ,Thin Solid Films 535, 78–82, (2013)
    16.L. J. Chen and Y. J. Chuang, “Quaternary semiconductor derived and formation mechanism by non-vacuumroute from solvothermal nanostructures for high-performance application” ,Mater. Lett.91, 372–375, (2013)
    17.S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, and D. B. Mitzi, “Low band gap liquid-processedCZTSe solar cell with 10.1% efficiency” ,Environ. Eng. Sci. 5(5), 7060, (2012)
    18.M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, and W. T. Lin, “Effects of hydrazine on thesolvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films”,Thin Solid Films 544, 291–295, (2013)
    19.M. S. Park, D. H. Kim, S. J. Sung, H. J. Jo, and J. K. Kang, “Growth of Cu2ZnSnSe4 thin films by spin-coatingand selenization process” ,IEEE Nano 2011 Conference, 222–226, (2011)
    20.Y. Cao, M. S. Denny, Jr., J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I.Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, and W. Wu, “High-efficiency solutionprocessedCu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles” ,J. Am. Chem.Soc. 134(38), 15644–15647, (2012)
    21.Y. Liu, D. Y. Kong, H. You, C. L. Chen, X. H. Lin, and J. Brugger, “Structural and optical properties of theCu2ZnSnSe4 thin films grown by nano-ink coating and selenization”,J. Mater. Sci.-Mater. Electron.24(2), 529–535, (2013)
    22.H. Zhang, Z. Q. Li, Y. R. Chen, J. J. Li, Z. Sun, Z. Yang, and S. M. Huang, “Growth of Cu2ZnSn(S,Se)4 thinfilms by a simple Eco-friendly solution route method” ,Surf. Rev. Lett. 19(04), 1250034, (2012)
    23.W. Liu, B. Guo, C. Mak, A. Li, X. Wu, and F. Zhang, “Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals byhydrothermal method for use in solar cells” ,Thin Solid Films 535, 39–43, (2013)
    24.P. M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. M.Se, “Composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Ramanspectroscopy” ,Thin Solid Films 519(21), 7394–7398, (2011)
    25.H. Zhao and C. Persson, “Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4” ,Thin Solid Films 519(21),7508–7512 ,(2011)
    26.P. Y. Lee, S. C. Shei, E. H. Hsu, S. J. Chang, and S. P. Chang, “Synthesis of Cu2ZnSnSe4 nanocrystals frommetal sources using a facile process in isophorondiamine” ,Mater. Lett.98, 71–73, (2013)
    27.Y. F. Du, W. H. Zhou, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, and S. X. Wu, “Solvothermal synthesis andcharacterization of quaternary Cu2ZnSnSe4 particles”,Mater. Sci. Semicond. Process.15(2), 214–217, (2012)
    28.J. Chang, J. E. Han, and D. Y. Jung, “Solvothermal synthesis of copper indium diselenide in toluene” ,Bull.Korean Chem. Soc. 32(2), 434–438, (2011)
    29.A. H. Reshak, K. Nouneh, I. V. Kityk, J. Bila, S. Auluck, H. Kamarudin, and Z. Sekkat, “Structural, electronicand optical properties in earth-abundant photovoltaic absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFTcalculations” ,Int. J. Electrochem. Sci. 9, 955–974,(2014)
    30.B. S. Pawar, S. M. Pawar, S. W. Shin, D. S. Choia, C. J. Park, S. S. Kolekar, and J. H. Kim, “Effect ofcomplexing agent on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films” ,Appl. Surf.Sci. 257(5), 1786–1791, (2010)
    31.K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoona, and S. J. Ahn, “Role ofchelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In-Se nanoparticleprecursors” ,J. Mater. Chem. 22(17), 8444–8448 (2012).in film solar cells based on a single-step co-evaporation process,” Thin Solid Films 535, 52–56,(2013)
    32.S. Susanne, S. Susan, “Kesterites—a challenging material for solar cells”,Prog. Photovoltatics, vol.20, no.5, pp.512–519, (2012)
    33.M. P. Suryawanshi, G. L. Agawane, S. M. Bhosale, S. W. Shin, P. S. Patil, J. H. Kim, A.V. Moholkar, “CZTS based thin film solar cells: a status review” ,Mater. Sci. Tech., 28 (1/2), 98-109,( 2013)
    34.M. Patel, I. Mukhopadhyay, A. Ray, “Structural, optical and electrical properties of spray-deposited CZTS thin films under a nonequilibrium growth condition” ,J. Phys. D: Appl. Phys., 45, 445103, (2012)
    35.L. A. Wahab, M. B. E. Den, A. A. Farrag, S. A. Fayek, K. H. Marzouk, “Electrical and optical properties of chalcopyrite compounds” ,J. Phys. Chem. Solids, 70, 604–608, (2009)
    36.I. H. Mohammad, “Prospects of CZTS solar cells from the perspective of material properties, fabrication methods and current research challenges” ,Chalcogenide Lett., 9, ,231-242, (2012)
    37.J. Sunghun, G. Jihye, H. Y. Jae, J. A. Se, N. Dahyun, C. Hyeonsik, A. Seungkyu, C. Ara, S. S. Kee, H. Y. Kyung, “Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process” ,Thin Solid Films, 535, 52-56, (2013)
    38.D. B. Mitzi n, O. Gunawan, T. K. Todorov, K. Wang, S. Guha, “The path towards a high-performance solution-processed kesterite solar cell” ,Sol. Energy Mater. Sol. Cells, 95, 1421-1436, (2011)
    39.O. Volobujeva, S. Bereznev, J. Raudoja, K. Otto, M. Pilvet, E. Mellikov “Synthesis and characterisation of Cu2ZnSnSe4 thin films prepared via a vacuum evaporation-based route” ,Thin Solid Films, 535, 48-51, (2013)
    40.X. Lin, J. Kavalakkatt, K. Kornhuber, S. Levcenko, M. C. Lux-Steiner, A. Ennaoui, “Structural and optical properties of Cu2ZnSnS4 thin film absorbers from ZnS and Cu3SnS4 nanoparticle precursors” ,Thin Solid Films, 535, 10-13, (2012)
    41.Y. Li, Q. Han, W. Shi, “The study of annealing process for CZTSSe under extra chalcogen vapor pressure” ,Chalcogenide Lett., 11, 167-174, (2014)
    42.S. M. Pawar, A. I. Inamdar, B. S. Pawar, K. V. Gurav, S. W. Shin, Xiao Yanjun, S. S. Kolekar, J. H. Lee, J. H. Kim, H. Im, “Synthesis of Cu2ZnSnS4 (CZTS) absorber by rapid thermal processing (RTP) sulfurization of stacked metallic precursor films for solar cell applications” ,Mater. Lett., 118, 76-79, (2014)
    43.R. A. Wibowo, W. H. Jung, K. H. Kim, “Synthesis of Cu2ZnSnSe4 compound powders by solid state reaction using elemental powders Original Research Article” ,J. Phys. Chem. Solids, 71, 1702-1706, (2010)
    44.P. U. Bhaskar, G. S. Babu, Y. B. K. Kumar, V. S. Raja, ”Growth and characterization of Cu2ZnSnSe4 thin films by a two-stage process” ,Sol. Energy Mater. Sol. Cells, 115, 181–188, (2013)
    45.G. Zoppi1, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, L. M. Peter “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors” ,Prog. Photovoltaics, 17, 315-319, (2009)
    46.R. A. Wibowo, W. H. Jung, M. H. A. Faruqi, I. Amal, K. H. Kim, “Crystallization of Cu2ZnSnSe4 compound by solid state reaction using elemental powders” ,Mater. Chem. Phys., 124, 1006-1010, (2010)
    47.Susan Schorr, Alfons Weber, Veijo Honkimäki, Hans-Werner Schock, “In-situ investigation of the kesterite formation from binary and ternary sulphides” ,Thin Solid Films, 517, 2461-2464, (2009)
    48.R. Schurr, A. Hölzing, R. Hock, “Real-time investigations on the formation reactions during annealing of sulfurized Cu–Sn precursors” ,Thin Solid Films, 519, 7412-7415, (2011)
    49.Shiyou Chen, Ji-Hui Yang, X. G. Gong, Aron Walsh, and Su-Huai Wei, “Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4” ,Phys. Rev. B, 81, 245204, (2010)
    50.Akihiro Nagoya, Ryoji Asahi, Roman Wahl, and Georg Kresse. “Defect formation and phase stability of Cu2ZnSnS4 photovoltaic material” ,Phys. Rev. B, 81, 113202, (2010)
    51.Aron Walsh, Shiyou Chen, Su-Huai Wei and Xin-Gao Gong, “Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4” ,Adv. Energy Mater., 2, 400-409, (2012)
    52.Shiyou Chen, Aron Walsh, Xin-Gao Gong and Su-Huai Wei “Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers” ,Adv. Mater., 25, 1522-1539, (2013)
    53.J. Iljina, O. Volobujeva, T. Raadik, N. Revathi, J. Raudoja, M. Loorits, R. Traksmaa, E. Mellikov “Selenisation of sequentially electrodeposited Cu–Zn and Sn precursor layers” ,Thin Solid Films, 535, 14-17, (2013)
    54.Zhesheng Chen, Lei Han, Lei Wan, Chunhui Zhang, Haihong Niu, Jinzhang Xu, “Cu2ZnSnSe4 thin films prepared by selenization of co-electroplated Cu–Zn–Sn precursors” Appl. Surf. Sci., 257, 8490-8492, (2011)
    55.P. M. P. Salomé, P. A. Fernandes, A. F. da Cunha, “Morphological and structural characterization of Cu2ZnSnSe4 thin films grown by selenization of elemental precursor layers” ,Thin Solid Films, 517, 2531-2534, (2009)
    56.M. Cao, Y. Shen, “A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles”,J. Cryst. Growth, 318, 1117–1120, (2011)
    57.Yan-Fang Du, Wen-Hui Zhou, Yan-Li Zhou, Peng-Wei Li, Jun-Qi Fan, Jing-Jing He, Si-Xin Wu, “Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles”,Mat. Sci. Semicon. Proc.,15, 214-217, (2012)
    58.Vahid A. Akhavan, Brian W. Goodfellow, Matthew G. Panthani, Chet Steinhagen, Taylor B. Harvey, C. Jackson Stolle, Brian A. Korgel, “Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics” ,J. Solid State Chem., 189, 2-12, (2012)
    59.Ajay Singh, Hugh Geaney, Fathima Laffir, and Kevin M. Ryan, “Colloidal Synthesis of Wurtzite Cu2ZnSnS4 Nanorods and Their Perpendicular Assembly” ,J. Am. Chem. Soc., 134, 2910-2913, (2012)
    60.H Wei, W Guo, Y Sun, Z Yang, Y Zhang, “Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals” ,Mater. Lett., 64, 1424-1426, (2010)
    61.R.J. Deokate, A.D. Adsool, N.S. Shinde, S.M. Pawar, C.D. Lokhande “Structural and Optical Properties of Spray-deposited Cu2ZnSnS4 thin Films” ,Thin Solid Films, 517, 2541-2544, (2009)
    62.Jicheng Zhou, Liang You, Shaowen Li, Yanlin Yang, “Preparation and characterization of Cu2ZnSnS4 microparticles via a facile solution route”,Mater. Lett., 81, 248-250, (2012)
    63.Thomas Rath, Wernfried Haas, Andreas Pein, Robert Saf, Eugen Maier, Birgit Kunert, Ferdinand Hofer, Roland Resel, Gregor Trimmel, “Synthesis and characterization of copper zinc tin chalcogenide nanoparticles: Influence of reactants on the chemical composition” ,Sol. Energy Mater. Sol. Cells, 101, 87-94, (2012)
    64.Yanyan Cao, Michael S. Denny, Jr., Jonathan V. Caspar, William E. Farneth, Qijie Guo, Alex S. Ionkin, Lynda K. Johnson, Meijun Lu, Irina Malajovich, Daniela Radu, H. David Rosenfeld, Kaushik Roy Choudhury, and Wei Wu “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles” ,J. Am. Chem. Soc., 134, 15644-15647, (2012)
    65.Qijie Guo, Grayson M. Ford, Wei-Chang Yang, Bryce C. Walker, Eric A. Stach, Hugh W. Hillhouse, and Rakesh Agrawal, “Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals” ,J. Am. Chem. Soc., 132, 17384-17386, (2010)
    66.Wenbing Yang, Hsin-Sheng Duan, Brion Bob, Huanping Zhou, Bao Lei, Choong-Heui Chung, Sheng-Han Li, William W. Hou and Yang Yang, “Novel Solution Processing of High-Efficiency Earth-Abundant Cu2ZnSn(S,Se)4 Solar Cells” ,Adv. Mater., 24, 6323-6329, (2012)
    67.Jicheng Zhou, Liang You, Qiang Yi, Zhibin Ye, “One-step synthesis of Cu2ZnSnSe4 microparticles via a facile solution route in triethylenetetramine reaction media and its characterization”,Mater. Lett., 107, 225-227, (2013)
    68.M. Cao, Y. Shen, “A mild solvothermal route to kesterite quaternary Cu2ZnSnS4nanoparticles”,Journal of Crystal Growth, 318, 1,1117-1120,(2011)
    69.Lin-Jer Chen, Yu-Ju Chuang, “Quaternary semiconductor derived and formation mechanism by non-vacuum route from solvothermal nanostructures for high-performance application”,Mater. Lett., 91, 372-375, (2013)
    70.Wan-Ching Hsu, Brion Bob, Wenbing Yang, Choong-Heui Chung, and Yang Yang, “Reaction pathways for the formation of Cu2ZnSn(Se,S)4 absorber materials from liquid-phase hydrazine-based precursor inks” ,Energy Environ. Sci., 5, 8564-8571, (2012)
    71.Michelle D. Regulacio, Chen Ye, Suo Hon Lim, Michel Bosman, Enyi Ye, Shiyou Chen, Qing-Hua Xu, and Ming-Yong Han, “Colloidal Nanocrystals of Wurtzite-Type Cu2ZnSnS4: Facile Noninjection Synthesis and Formation Mechanism” ,Chem. Eur. J., 18, 3127-3131, (2012)
    72.P. Y. Lee, S. C. Shei, S. J. Chang, “Evolution pathways for the formation of Nano-Cu2ZnSnSe4 absorber materials via elemental sources and isophorondiamine chelation” ,J. Alloys Compd., 574, 27-32, (2013)
    73.Yan-Fang Du, Wen-Hui Zhou, Yan-Li Zhou, Peng-Wei Li, Jun-Qi Fan, Jing-Jing He, Si-Xin Wu,“Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles” ,Materials Science in Semiconductor Processing,15,2,214-217, (2012)
    74.Wibowo, R. A.;Jung,W. H.;Hilmy,M.;Faruqi,A.;Amal,I.;Kim,K. H.,“Crystallization of Cu2ZnSnSe4 compound by solid state reaction using elemental powders” ,Materials Chemistry and Physics , 124 , 2-3 , 1006-1010, (2010)
    75.Hsu,W. C.;Bob,B.;Yang,W.;Chung,C. H.;Yang,Y.,“Reaction pathways for the formation of Cu2ZnSn(Se,S)4 absorber materials from liquid-phase hydrazine-based precursor inks” ,Energy Environ. Sci., 5, 8564-8571,(2012)
    76.Regulacio,M. D.,Ye, C., Lim, S. H.,Bosman,M., Ye, E.,Chen,S.,Xu, Q. H.,Han,M. Y., Colloidal nanocrystals of wurtzite-type Cu2ZnSnS4: facile noninjection synthesis and formation mechanism ” ,Chemistry a European Journal, 18,11,3127-3131,(2012)
    77.Tong Liu, Zhengguo Jin, Jia Li, Jian Wang, Dalong Wang, Junyun Lai and Haiyan Du, “Monodispersed octahedral-shaped pyrite CuSe2 particles by polyol solution chemical synthesis” ,CrystEngComm, 15, 8903-8906, (2013)
    78.X. Wang, Z. Sun, C. Shao, D. Mboye, J. Zhao, “A facile and general approach to polynary semiconductor nanocrystals via a modified two-phase method” ,Nanotechnology, 22, 245605, (2011)
    79.Jun Lu, Yi Xie, Fen Xu and Liying Zhu, “Study of the dissolution behavior of selenium and tellurium in different solvents—a novel route to Se, Te tubular bulk single crystals”,J. Mater. Chem., 12, 2755-2761,( 2002)
    80.J. Chang, J. E. Han, and D. Y. Jung, “Solvothermal synthesis of copper indium diselenide in toluene”,Bull. Korean Chem. Soc., 32, 2, 434–438, (2011)
    81.Li,Y.;Han, Q.;Shi, W.,“THE STUDY OF ANNEALING PROCESS FOR CZTSSe UNDER EXTRA CHALCOGEN VAPOR PRESSURE”,Chalcogenide Letters, 11, 167-174,(2014)
    82.Jicheng Zhou, , Liang You, Qiang Yi, Zhibin Ye,“One-step synthesis of Cu2ZnSnSe4 microparticles via a facile solution route in triethylenetetramine reaction media and its characterization”,Material Letters, 107, 225-227, (2013)
    83.Nirav Vora, Jeffrey Blackburn, Ingrid Repins, Carolyn Beall, Bobby To, Joel Pankow, Glenn Teeter, Matthew Young and Rommel Noufi “Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se” ,J. Vac. Sci. Technol. A, 30, 51201-1, (2012)
    84.A. Redinger, K. Hönes, X. Fontané, V. R. Izquierdo, E. Saucedo, N. Valle, A. P. Rodríguez, S. Siebentritt, “Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films” ,Appl. Phys. Lett., 98, 101907, (2011)
    85.Tanaka, Tooru; Sueishi, Tatsuya; Saito, Katsuhiko; Guo, Qixin; Nishio, Mitsuhiro; Yu, Kin M.; Walukiewicz, Wladek, M.;Walukiewicz,W. “Existence and removal of Cu2Se second phase in coevaporated Cu2ZnSnSe4 thin films”,J. Appl. Phys,111, 053522, (2012)
    86.H. Irving, R. J. P. William, “The stability of transition-metal complexes” ,J. Chem. Soc., 3192-3210, (1953)
    87.R. G. Pearson, “Hard and soft acids and bases, HSAB, part 1: Fundamental principles” ,J. Chem. Educ., 45, 581, (1968)
    88.H. A. Neidig , T. G. Teates and R. T. Yingling, “The chemistry of orthophosphoric acid and its sodium salts” ,J. Chem. Educ., 45, 645, (1968)
    89.Mahshid Ahmadi, Stevin Snellius Pramana, Lifei Xi, Chris Boothroyd, Yeng Ming Lam, and Subodh Mhaisalkar, “Evolution Pathway of CIGSe Nanocrystals for Solar Cell Applications” ,J. Phys. Chem. C, 116, 8202-8209, (2012)
    90.Anita Gupta,Stability Constant and Thermodynamic Parameters Determination of A Semi-synthetic Penicillin Derivative with Various Bivalent Metal Ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Hg2+and Pb2+): A Potentiometric Study”,A. International Research Journal of Pure &Applied Chemistry, 3, 441-448,(2013)
    91.Litter,M. I., Unidad de Actividad Quı́mica, Centro Atómico Constituyentes, Comisión Nacional de Energı́a Atómica Av. Gral. Paz1499, Gral. San Martı́n, (1650) Buenos Aires, Argentina,“Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems”,Applied Catalysis B: Environmental, 1 , 89–114,(1999)
    92.Peter A. Lay, Neale S. McAlpine, Joseph T. Hupp, Michael J. Weaver, Alan M. Sargeson, “Solvent-dependent redox thermodynamics of metal amine complexes. Delineation of specific solvation effects”,Inorg. Chem, 29 (21), 4322–4328., (1990)
    93.Bao,S. P.;Shan, P.;Bin, H.;Hong, Y.G.;Ming. W. S.;Liang,D. Z.J,“Influence of pH Value in Electrolyte on Photovoltaic Performance of CIGS Thin-films Prepared by Electrochemical Method ”,Inorganic Materials , 28, 141-145, (2013)
    94.Jonathan J. Scragg, Phillip J. Dale, Diego Colombara, and Laurence M. Peter, “Thermodynamic Aspects of the Synthesis of Thin-Film Materials for Solar Cells” ,ChemPhysChem, 13, 3035-3046, (2012)
    95.Dr. Michelle D. Regulacio,Chen Ye,Dr. Suo Hon Lim,Dr. Michel Bosman,Dr. Enyi Ye,Dr. Shiyou Chen,Prof. Qing-Hua Xu,Prof. Ming-Yong Han, “Colloidal Nanocrystals of Wurtzite-Type Cu2ZnSnS4: Facile Noninjection Synthesis and Formation Mechanism”,Chem. Eur. J., 18, 3127-3131,(2012)
    96.Tong Liu, Zhengguo Jin, Jia Li, Jian Wang, Dalong Wang, Junyun Lai and Haiyan Du , “Monodispersed octahedral-shaped pyrite CuSe2 particles by polyol solution chemical synthesis ”,CrystEngComm, 15, 8903–8906, (2013)
    97.Tung-Cheng Liu, Yi Hu,” Preparation and Characterization of CZTSe Films through Electrochemical Deposition Route”, Int. J. Electrochem. Sci., 9 ,2985 – 2992,(2014)
    98.Pay-Yu Lee, Sheng-Po Chang, Shoou-Jinn Chang,” Photoelectrochemical characterization of n-type and p-type thin-film nanocrystalline Cu2ZnSnSe4 photocathodes”, Journal of Environmental Chemical Engineering, 3, 1, 297–303,(2015)
    99.H. Matsushita, T. Maeda, A. Katsui, T. Takizawa, “Thermal Analysis and Synthesis from the Melts of Cu-Based Quaternary Compounds Cu-III-IV-VI4 and Cu2-II-IV-VI4 (II=Zn, Cd; III=Ga, In; IV=Ge, Sn; VI=Se)”,J. Cryst. Growth, 208, 416-422, (2000)
    100.P. Kumar and K. Singh, ”Wurtzite ZnSe Quantum Dots: Synthesis, Characterization and PL Properties” ,J. Optoelectron. Adv. Mater., 1, 59-69, (2009)
    101.W. L. Liu, M. Q. Wu, L. D. Yan, R. C. Zhou, S. X. Si, S. R. Zhang, Q. Y. Zhang, “Noninjection Synthesis and Characterization of Cu2ZnSnSe4 Nanocrystals in Triethanolamine ”,Mater. Lett., vol. 65, pp. 2554-2557, (2011)

    4.3 Reference in chapter 4
    1. Viswanathan S. Saji, Ik-Ho Choi, Chi-Woo Lee,“Progress in electrodeposited absorber layer for CuIn (1-x) GaxSe 2(CIGS) solar cells”,Solar Energy , 85, 2666–2678,(2011)
    2. Stolle, C. Jackson; Harvey, Taylor B.; Korgel, Brian A., “nanocrystal photovoltaics:Review Of Recent progress”,Current Opinion in Chemical Engineering, 2, 160-167, (2013)
    3. M. Kaelin , D. Rudmann, A.N. Tiwari , “Low cost processing of CIGS thin film solar cells ”,Solar Energy, 77,749–756,(2004)
    4. Y. W. Huang , Wenxiu Que & J. Zhang , “Preparation and Characterization of Cu(In,Ga)Se2 Thin Films Derived by Frequency Magnetron Sputtering”,Ferroelectrics, 402,110–117,(2010)
    5. Jiang Liu, Daming Zhuang , Hexin Luan, Mingjie Cao, Min Xie, Xiaolong Li, “Preparation of Cu(In,Ga)Se2 thin film by sputtering from Cu(In,Ga)Se2 quaternary target”,Progress in Natural Science Materials International, 23,133–138,(2013)
    6. S.H. Mousavi, T.S. Müller, P.W. de Oliveira,“Synthesis of colloidal nanoscaled copper–indium–gallium–selenide (CIGS) particles for photovoltaic applications ”,Journal of Colloid and Interface Science, 382,48–52,(2012)
    7. M. Kaelina, D. Rudmanna, F. Kurdesaua, H. Zogga, T. Meyerb, A.N. Tiwari,“Low-cost CIGS solar cells by paste coating and selenization”,Thin Solid Films, 480, 486–490,(2005)
    8. Wei Wang, Yu-Wei Su, Chih-hungChang,“Inkjet printed chalcopyrite CuInxGa1-xSe2 thin film solar cells ”,Solar Energy Materials & Solar Cells, 95,2616–2620,(2011)
    9. Sin-Il Gu, Hyo-Soon Shin, Dong-Hun Yeo, Youn-Woo Hon, Sahn Nahm,“Thesis of the single phase CIGS particle by solvothermal method for solar cell application ”, Current Applied Physics, 11,99-102,(2011)
    10. J. Olejnı´cˇek, C.A. Kamler, A. Mirasano, A.L. Martinez-Skinner, M.A. Ingersoll, C.L. Exstrom ,S.A. Darveau, J.L. Huguenin-Love, M. Diaz N.J. Ianno R.J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction”,Solar Energy Materials & Solar Cells, 94,8–11,(2010)
    11. MyoungGuk Park,SeJin Ahn,Jae Ho Yun,Jihye Gwak,Ara Cho,SeoungKyu Ahn,Keeshik Shin,Dahyun Nam,Hyeonsik Cheong,Kyunghoon Yoon, “ Characteristics Of Cu(In,Ga)Se2 (CIGS) Thin films Deposited By Direct Solution coating process”,Journal of Alloys And Compounds, 513, 68–74,(2012)
    12. Eunjoo Lee, Jin Woo Cho, Jaehoon Kim, Jaeho Yun, Jong Hak Kim, ByoungKoun Min, “Synthesis of CIGS powders: Transition from binary to quaternary crystalline structure ”,Journal of Alloys and Compounds, 506,969–972,(2010)
    13. Matthew G. Panthani, Vahid Akhavan,Brian Goodfellow, Johanna P. Schmidtke,Lawrence Dunn,Ananth Dodabalapur,Paul F. Barbaraand Brian A. Korgel, “ Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS)Nanocrystal “Inks” for Printable Photovoltaics”,J. Am. Chem. Soc., 130,16770–16777,(2008)
    14. Alexander R. Uhl , Yaroslav E. Romanyuk, Ayodhya N. Tiwari,“Thin film Cu(In,Ga)Se2 solar cells processed from solution pastes with polymethylmethacrylate binder”,Thin Solid Films, 519,7259–7263,(2011)
    15. Eunjoo Lee, Se Jin Park, Jin Woo Cho, Jihye Gwak, Min-Kyu Oh, Byoung Koun Min, “Nearly carbon-free printable CIGS thin films for solar cell applications”,Solar Energy Materials & Solar Cells, 95,2928–2932,(2011)
    16. David B. Mitzi , Min Yuan, Wei Liu, Andrew J. Kellock, S. Jay Chey, LynneGignac, Alex G. Schrott,“Hydrazine-based deposition route for device-quality CIGS films”,Thin Solid Films, 517,2158–2162,(2009)
    17. Teodor K. Todorov, Oki Gunawan, Tayfun Gokmen and David B. Mitzi, “Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell”,Prog. Photovolt: Res. Appl., 21,82 –87,(2013)
    18. Philip Jackson, Dimitrios Hariskos, Erwin Lotter, Stefan Paetel, Roland Wuerz, Richard Menner, Wiltraud Wischmann and Michael Powalla,“ New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%”,Prog. Photovolt: Res. Appl., 19,894–897,(2011)
    19. Wei Wang, Yu-Wei Su, Chih-hung Chang,“ Inkjet printed chalcopyrite CuInxGa1-xSe2 thin film solar cells ”,Solar Energy Materials & Solar Cells, 95,2616–2620,(2011)
    20. ExstromCL,DarveauSA,Martinez-SkinnerAL,IngersollM,OlejnicekJ, Mirasano A,etal., “REACTION PATHWAY INSIGHTS INTO THE SOLVOTHERMAL PREPARATION OF Culn1-xGaxSe2 NANOCRYSTALLINE MATERIALS”,In:proceedings of the33rd IEEE photovoltaic specialists conference,1–6,(2008)
    21. ContrerasMA,Mansfield LM,EgaasB,LiJ,RomeroM,Noufi R, etal.,“Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency”,Prog Photovolt:ResAppl,20,843–50, (2012)
    22. A.Terakawa,“Review of thin-film silicon deposition techniques for high-efficiency solar cells”,developed at Panasonic/Sanyo, Sol.Energ. Mat. Sol. C. 119,204–208,(2013)
    23. C. Becker, V.Preidel,D.Amkreutz,J.Haschke,B.Rech, “Double-side textured liquid phase crystallized silicon thin-film solar cells on imprinted glass”,Sol.Energ. Mat. Sol. C. 135,2-7, (2015)
    24. N. Romeo1, A. Bosio1, D. Menossi1, A. Romeo,Matteo Aramini1,“Last Progress in CdTe/CdS Thin Film Solar Cell Fabrication Process”,Energy Procedia 57 , 65-72, (2014)
    25. SubhashChander, M.S.Dhaka,“Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications”,PhysicaE80,62-68, (2016)
    26. ArnulfJager-Waldau, “Progress in chalcopyrite compound semiconductor research for photovoltaic applications and transfer of results into actual solar cell production”,Sol.Energ. Mat. Sol. C.,95 , 1509-1517, (2011)
    27. KentaroMatsunaga, Takashi Komaru, YujiNakayama, TomoyukiKumeb, YasuhiroSuzuki, “Mass-production technology for CIGS modules”,Sol.Energ. Mat. Sol. C.,93, 1134-1138, (2009)
    28. K. Shoori, G. Kavei, “Copper indium gallium diselenide–CIGS photovoltiacsolar cell technology”,Int. Mat.Phys. J. ,1 ,15-21,(2013)
    29. Philip Jackson, DimitriosHariskos, Roland Wuerz, Oliver Kiowski, Andreas Bauer,Theresa MagorianFriedlmeier, Michael Powalla,“Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%”,Phys.Status Solidi-R,9,28–31,(2015)
    30. CongkangXu,HongwangZhang,JamesParry,SamanthePerera,GenLong,HaoZeng,“A singlesource three-stage evaporation approach to CIGS absorber layer for thin film solar cells ”,Sol.Energ. Mat.Sol. C. ,117,357–362, (2013)
    31. SreedeviGedi, Qian Sun, Chan-WookJeon, “Remarkable enhancement of the efficiency of Cu(In,Ga)Se2 solar cells by annealing the (In,Ga)2Se3 precursor layer”,J. Alloy.Compd., 659 ,25, (2016)
    32. Jeha Kim, Ho-Sub Lee, Nae-Man Park,“Post-annealing effect on the reactively sputter-grown CIGS thin filmsand its influence to solar cell performance”,Curr. Appl. Phys., 14, S63-S68, (2014)
    33. Ming-HuaYeh, Hong-Ru Hsu, Kai-Cheng Wang, Shih-Jung Ho, Guang-Hong Chen,Hsueh-Shih Chen, “Toward low-cost large-area CIGS thin film: compositionaland structural variations in sequentially electrodepositedCIGS thin films”,Solar Energy, Sol. Energy,125 ,415–425, (2016)
    34. Viswanathan S. Saji, Ik-Ho Choi, Chi-Woo Lee, “ Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2 (CIGS) solar cells”,Sol. Energy,85 , 2666–2678, (2011)
    35. Sin-Il Gu, Hyo-Soon Shin, Dong-Hun Yeo, Youn-Woo Hong, SahnNahm, “Synthesis of the single phase CIGSe particle by solvothermal method for solar cell application ”,Curr. Appl. Phys.,11,S99-S102, (2011)
    36. S.H. Mousavi, T.S. Müller, R. Karos, P.W. de Oliveira,“Faster synthesis of CIGSe nanoparticles using a modified solvothermal method ”,J. Alloy. Compd.,659,178-183, (2016)
    37. Wei-Hsiang Hsu, Hsing-I Hsiang,Yu-Lun Chang, Dah-Tong Ray, Fu-Su Yen, “ Formation mechanisms of Cu(In0.7Ga0.3)Se2nanocrystallitessynthesized using hot-injection and heating-up processes”,J. Am. Ceram. Soc., 94,3030–3034, (2011)
    38. Xiaogu Huang, Zhe Zhang, Bo Song, Yulin Deng, Shi Liu,“Facile solvothermal way to synthesize CuIn0.7Ga0.3S2nanocrystals and their application in low-cost photovoltaic device”,J. Alloy. Compd.,656, 663-666, (2016)
    39. Guang-Xing Liang, Ping Fan, Chao-Ming Chen , Zhuang-HaoZheng, Dong-Ping Zhang, “ A promising sputtering for in situ fabrication of CIGS thin films without post-selenization ”,J. Alloy. Compd., 610 ,337-340, (2014)
    40. Haifan Liang, UpendraAvachat, Wei Liu, Jeroen van Duren, Minh Le,“CIGS formation by high temperature selenization of metal precursors in H2Se Atmosphere ”,SolidState Electron.,76, 95–100, (2012)
    41. Chung Ping Liu, Chuan Lung Chuang,“Fabrication of CIGS nanoparticle-ink using ball milling technology for applied in CIGS thin films solar cell”,Powder Technol.,229 , 78–83, (2012)
    42. San Kang, Rahul Sharma, Jae-Kwan Sim, Cheul-Ro Lee,“Band gap engineering of tandem structured CIGS compound absorption layerfabricated by sputtering and selenization”,J. Alloy. Compd., 563 ,207–215, (2013)
    43. Cherng-Yuh Su, Wei-HaoHo, Hsuan-ChingLin, Cuo-YoNieh, Shih-Chang Liang,“The effects of the morphology on the CIGS thin films prepared by CuInGa single precursor”,Sol.Energ. Mat. Sol. C.,95, 261–263, (2011)
    44. Chi-Jie Wang, Shih-Chang Shei, Shoou-Jinn Chang,“Novel solution process for synthesis of CIGS nanoparticles using polyetheramine as solvent”,Mat.Lett.,122,52–54, (2014)
    45. A.BenMarai, J. Ben Belgacem, Z. Ben Ayadi, K. Djessas, S. Alaya,“Structural and optical properties of CuIn1-xGaxSe2 nanoparticles synthesized by solvothermal route”,J. Alloy. Compd.,658, 961-966, (2016)
    46. Huan-Hsin Sung, Du-Cheng Tsai, Zue-Chin Chang, Bing-HauKuo, Yi-Chen Lin, Tien-Jen Lin, Shih-Chang Liang, Fuh-Sheng Shieu, “Ga gradient behavior of CIGS thin films prepared through selenization of CuGa/In stacked elemental layers”,Surf.Coat. Tech., 259, 335–339, (2014)
    47. Victor Izquierdo-Roca, Xavier Fontané, Edgardo Saucedo, Jesus Salvador Jaime-Ferrer, JacoboÁlvarez-García, Alejandro PérezRodríguez, Veronica Bermudezc, Joan Ramon Morante, “Process Monitoring of Chalcopyrite Photovoltaic Technologies by Raman Spectroscopy: An Application to Low Cost Electrodeposition Based Processes”,New J. Chem., 35,453-460, (2011)
    48. W. Wang, Y. W. Su and C. H. Chang, “Inkjet Printed Chalcopyrite CuInxGa1−xSe2 Thin Film Solar Cells”,Sol.Energ. Mat. Sol. C.,95,2616-2620, (2011)
    49. Christopher L. Exstrom, Scott A. Darveau, Andrea L. Martinez-Skinner, Matt Ingersoll, Jiri Olejnicek, AnatoleMirasano, Adam T. Haussler, “Reaction pathway insights into the solvothermal preparation of Culn1-xGaxSe2nanocrystalline materials”,33rd IEEEPhotovoltaic Specialists Conference. PVSC '08,1 – 6 , (2008)
    50. Chi-Jie Wang, Shih-Chang Shei, Shoou-Jinn Chang,“Thermodynamics and kinetics insight into reaction mechanism of Cu2ZnSnSe4nanoink based on binary metal-amine complexes in polyetheramine-synthesizedprocess”,J. Alloy. Compd.,676,54-63, (2016)
    51. M. A. Contreras, L. M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger- Voigt and W. Mannstadt, “Wide Bandgap Cu(In,Ga)Se2 Solar Cells with Improved Energy Conversion Efficiency”,Progress inPhotovoltaics: Research and Applications, 20,843-850, (2012)
    52. Zhou Yu, Yong Yan, Shasha Li, Yanxia Zhang, Chuanpeng Yan, Lian Liu, Yong Zhang, Yong Zhao,“Significant effect of substrate temperature on the phase structure, optical andelectrical properties of RF sputtered CIGS films”,Appl. Surf. Sci.,264, 197-201, (2013)
    53. Hsiu-Po Kuo, Hung-An Tsai, An-Ni Huang, Wen-Chueh Pan,“CIGS absorber preparation by non-vacuum particle-based screen printing and RTA densification”,Appl.Energ.,164, 1003–1011, (2016)

    5.3 Reference in chapter 5
    1. S.W. Shin, J.H. Han, C.Y. Park, S.R. Kim, Y.C. Park, G.L. Agawane,A.V. Moholkar, J.H. Yun, C.H.Jeong, J.Y. Lee, J.H. Kim, “A facile and low cost synthesis of earth abundant element Cu2ZnSnS4 (CZTS)nanocrystals: Effect of Cu concentrations”,J. Alloys Compd.,541, 192-197, (2012)
    2. D.M. Berg, R. Djemour, L.Gütay, G.Zoppi,S.Siebentritt, P.J. Dale, “Thin film solar cells based on the ternary compound Cu2SnS3”,Thin Solid Films,520,6291-6294, (2012)
    3. M.Ahmadi,S.S. Pramana,S.K. Batabyal, C.Boothroyd,S.G. Mhaisalkar, Y.M. Lam, “Synthesis of Cu2SnSe3nanocrystals for solution processablephotovoltaic cells”, Inorg. Chem. ,52, 1722-1728, (2013)
    4. K.M. Kim, H.Tampo, H. Shibata, S.Niki,“Growth and characterization of coevaporated Cu2SnSe3 thin films forphotovoltaic applications”,Thin Solid Films ,536,111-114, (2013)
    5. H. Zhang, M.Xie, S. Zhang, Y. Xiang,“Fabrication of highly crystallized Cu2SnS3thin films throughsulfurization of Sn-rich metallic precursors“,J. Alloys Compd.,602,199-203, (2014)
    6. Z. Tang, Y.Nukui, K.Kosaka, N.Ashida, H.Uegaki, T.Minemoto, “Reduction of secondary phases in Cu2SnSe3 absorbers for solar cellApplication”,J.Alloys Compd.,608,213-219, (2014)
    7. N.Aihara, H. Araki, A. Takeuchi, K.Jimbo, H.Katagiri, Fabrication of Cu2SnS3 thin filmsby sulfurization of evaporated Cu-Sn precursors for solar cells”, Phys. Status Solidi C, 10, 1086-1092, (2013)
    8. D.H.Kuo, W.D.Haung, Y.S. Huang, J.D. Wu, Y.J. Lin,”Single-step sputtered Cu2SnSe3films using the targets composed of Cu2Se and SnSe2”,Thin Solid Films, 518,7218-7221, (2010)
    9. P. Zhao, S. Cheng,”Influence of sulfurization temperature on photoelectric properties Cu2SnS3thin films deposited bymagnetron sputtering”,Adv. Mater.Sci. Eng.,726080, (2013)
    10. D.Tiwari, T.K.Chaudhuri, T.Shripathi, U. Deshpande, R.Rawat,”Non-toxic,earth-abundant2%efficientCu2SnS3 solar cellbasedontetragonal films direct-coatedfromsinglemetal-organicprecursorsolution”,Sol.Energ. Mat. Sol. C.,113, 165-170, (2013)
    11. S. Dias, S.B. Krupanidhi,”Temperature dependent electrical behavior of Cu2SnS3 films”,Adv. ,4,037121, (2014)
    12. A.Kanevce, I.Repins, S.H. Wei,”Impact of bulk properties and local secondary phases on theCu2(Zn,Sn)Se4 solar cells open-circuit voltage“,Sol.Energ.Mater.Sol.C.,133,119-125, (2015)
    13. M.Courel, J.A. Andrade-Arvizu, O. Vigil-Galan,”Loss mechanisms influence on Cu2ZnSnS4/CdS-based thin film solar cellperformance”,SolidState Electron.,111, 243-250, (2015)
    14. C.J. Wang, S.C.Shei, S.J. Chang,”Synthesis and characterization of CZTSenanoinksusing polyetheramine as solvent”,Opt. Mater. Express,4,1593-1600, (2014)
    15. C.J. Wang, S.C.Shei, S.J. Chang,“Novel solutionprocessforsynthesisofCIGSnanoparticlesusingpolyetheramineassolvent”,Mater.Lett.,122,52-54, (2014)
    16. C.J. Wang, S.C. Shei, S.J. Chang,“Effect of solvent chelating on crystal growth mechanism of CZTSenanoink in polyetheramine”,IEEE T. Nanotechnology,14,896-903, (2015)
    17. R.Xie, M. Rutherford, X.Peng,”Formation of high-quality I-III-VI semiconductornanocrystals by tuning relative reactivity of cationicprecursors”,J. Am. Chem. Soc. ,131,5691-5697, (2009)
    18. M. Grossberg, T. Raadik, J. Raudoja, J. Krustok,”Photoluminescence study of defect clusters in Cu2ZnSnS4polycrystals”,Curr. Appl.Phy.,14,447-450, (2014)
    19. M. Grossberg , J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik,”Photoluminescence and Raman study of Cu2ZnSn(SexS1−x)4monograins forphotovoltaic applications”,Thin Solid Films ,519, 7403-7406, (2011)
    20. M. Grossberg, J. Krustok, J. Raudoja, T. Raadik, “The role of structural properties on deep defect states in Cu2ZnSnS4studied by photoluminescence spectroscopy”,Appl. Phys. Lett. ,101,102102, (2012)
    21. K.Tanaka, T.Shinji,H.Uchiki,”PhotoluminescencefromCu2ZnSnS4 thin films withdifferent compositions fabricatedbyasputtering-sulfurizationmethod “,Sol.Energ.Mater.Sol.C.,126,143-148, (2014)
    22. M. Grossberg, J. Krustok, K. Timmo, M. Altosaar,”Radiative recombination inCu2ZnSnSe4monograins studied byphotoluminescence spectroscopy”,Thin Solid Films, 517, 2489-2492,(2009)
    23. J.H.Yang, X. G. Gong, A. Walsh, S.H. Wei,”Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4”, Phys. Rev. ,B81,245204, (2010)
    24. P. Hu, Y. Cao,”Synthesis of rod and lath-shaped CuSe and tremella-shaped Cu2-xSe nanostructures at room temperature, and their optical properties“,J.Nanopart Res. ,14,703, (2012)
    25. D. Martínez-Escobar, M.Ramachandran, A. Sánchez-Juárez, J.S.N. Rios,”Optical and electrical properties of SnSe2 and SnSe thin films prepared by Spray pyrolysis”,Thin Solid Films,535,390-393, (2013)
    26. S.H. Han, A.M. Hermann, F.S. Hasoon, H.A. Al-Thani, D. H. Levi,”Effect of Cu deficiency on the optical properties and electronic structure of CuInSe2 and CuIn0.8Ga0.2Se2 determined by spectroscopic ellipsometry”,Appl. Phys.Lett.,85,576, (2004)
    27. David B.Mitzin, OkiGunawan,TeodorK.Todorov,KejiaWang,SupratikGuha,“The path towards a high-performance solution-processed kesterite solar cell ”,Solar Energy Materials & Solar Cells, 95, 1421–1436,(2011)
    28. Wei Wang, Mark T. Winkler, Oki Gunawan, TayfunGokmen, Teodor K. Todorov,Yu Zhu, David B. Mitzi, “Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Effi ciency ”,Advanced Energy Materials, 4, 1301465,1-5, (2014)
    29. MahshidAhmadi, Stevin S. Pramana, Sudip K. Batabyal, Chris Boothroyd, Subodh G. Mhaisalkar, Yeng Ming Lam, “Synthesis of Cu2SnSe3 Nanocrystals for Solution Processable Photovoltaic Cells ”,Inorg. Chem., 52, 1722-1728,(2013)
    30 Kang Min Kim, Hitoshi Tampo, Hajime Shibata, Shigeru Niki, “Temperature induced phase transformation in coevaporated Cu2SnSe3 thin films”,Materials Letters, 116 , 61–63,(2014)
    31. Dong-HauKuo , WalelignWubet, “Mg dopant in Cu2SnSe3 : An n-type former and a promoter of electrical mobility up to 387 cm2v-1s-1”,J. Solid State Chemistry, 218 , 44–49, (2014)
    32. Jianjun Wang, Ajay Singh, Pai Liu, Shalini Singh, Claudia Coughlan, YinaGuo, Kevin M Ryan, “Colloidal Synthesis of Cu2SnSe3 Tetrapod Nanocrystals”,J. Am. Chem. Soc., 135, 7835 – 7838,(2013)
    33. Michelle E. Norako, Matthew J. Greaney, and Richard L. Brutchey, “Synthesis and Characterization of Wurtzite-Phase Copper Tin Selenide Nanocrystals”,J. Am. Chem.Soc., 134, 23 – 26,(2012)
    34. RachmatAdhiWibowo, Stefan Moeckel, HyesunYoo, Astrid Hoelzing, Rainer Hock,Peter J. Wellmann, “Formation of Cu2SnSe3 from stacked elemental layers investigated by combined in situ X-ray diffraction and differential scanning calorimetry techniques ”,Journal of Alloys and Compounds, 588,254–258,(2014)
    35. Kang Min Kim , Hitoshi Tampo, Hajime Shibata,ShigeruNiki, “Growth and characterization of coevaporated Cu2SnSe3 thin films forphotovoltaic applications ”,Thin Solid Films, 536,111–114,(2013)
    36. Dong-HauKuo , Wei-Di Haung, Ying-Sheng Huang, Jiun-De Wu, Yan-Jih Lin, “Single-step sputtered Cu2SnSe3 films using the targets composed of Cu2Se and SnSe2”,Thin Solid Films, 518 , 7218–7221, (2010)
    37. Maria Ib´a~nez, Doris Cadavid, Umberto Anselmi-Tamburini, Reza Zamani, St´ephaneGorsse, Wenhua Li, Antonio M. L´opez, Joan Ramon Morante, JordiArbiol, Andreu Cabot , “Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystals ”,J. Mater. Chem. A, 1, 1421–1426, (2013)
    38. Bin Li, Yi Xie , Jiaxing Huang, YitaiQian , “Synthesis, Characterization, and Properties of Nanocrystalline Cu2SnS3”,Journal of Solid State Chemistry,153, 170 -173,(2000)
    39. Wzy Mohammad Harati, JiaJia, Ke´vinGiffard, Kyle Pellarin, Carly Hewson, David A. Love, Woon Ming Lau, Zhifeng Ding, “One-pot electrodeposition, characterization and photoactivity of stoichiometric copper indium gallium diselenide (CIGS) thin films for solar cells “,Phys. Chem. Chem. Phys., 12, 15282–15290, (2010)
    40. Fiechter, M. Martinez, G. Schmidt, W. Henrion, Y. Tomm ,“Phase relations and optical properties of semiconducting ternary sulfides in the system Cu–Sn–S”, Journal of Physics and Chemistry of Solids,64 ,1859–1862,(2003)
    41. G. Suresh Babu, Y.B. Kishore Kumar, Y. Bharath Kumar Reddy, V. Sundara Raja,”Growth and characterization of Cu2SnSe3 thin films” ,Materials Chemistry and Physics, 96, 442–446,(2006)
    42. David Avellaneda, M. T. S. Nair,P. K. Nair, “Cu2SnS3 and Cu4SnS4 Thin Films via Chemical Deposition for Photovoltaic Application” ,Journal of The Electrochemical Society, 157 (6),D346-D352,(2010)
    43. N. R. Mathews,J. TamyBenı´tez,F. Paraguay-Delgado , M. Pal , L. Huerta,“Formation of Cu 2 SnS 3 thin film by the heat treatment of electrodeposited SnS–Cu layers”, J Mater Sci: Mater Electron, 24,4060–4067,(2013)
    44. RenguoXie, Michael Rutherford, and XiaogangPeng,“Formation of High-Quality I - III - VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors “,J. AM. CHEM. SOC., 131, 5691–5697, (2009)
    45. G. HemaChandra,O. Lakshmana Kumar,R. PrasadaRao, S. Uthanna, “Influence of substrate and selenization temperatures on the growth of Cu2SnSe3 films” ,J. Mater.Sci, 46,6952–6959, (2011)
    46. Hao Guan, HonglieShen, Chao Gao,Xiancong He, “The influence of annealing atmosphere on the phase formation of Cu–Sn–S ternary compound by SILAR method” ,Journal of Materials Science: Materials in Electronics, 24(9), 3195-3198,(2013)
    47. Ara Cho, SeJinAhn, Jae Ho Yun , JihyeGwak , SeungKyuAhn , Keeshik Shin, JinsuYoo,Hyunjoon Song , Kyunghoon Yoon, “The growth of Cu2−xSe thin films using nanoparticles “,Thin Solid Films, 546,299–307,(2013)
    48. Jianjun Wang, Ajay Singh, Pai Liu, Shalini Singh, Claudia Coughlan, YinaGuo, Kevin M. Ryan, “Colloidal Synthesis of Cu2SnSe3 Tetrapod Nanocrystals” ,J. Am. Chem. Soc., 135, 7835 – 7838,(2013)
    49. S. Prucnal, F. Jiao, D. Reichel, K. Zhao, S. Cornelius, M. Turek,K. Pyszniak, A. Drozdziel, W. Skorupa, M. Helm, S. Zhou,“Influence of Flash Lamp Annealing on the Optical Properties of CIGS Layer” ,ActaPhysicaPolonica, A., 125(6), 1404,(2014)
    50. WilmanSeptina, Shigeru Ikeda,Akio Kyoraiseki, Takashi Harada, Michio Matsumura,”Single-step Electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film With a kesterite Structure”, ElectrochimicaActa,88, 436–442,(2013)
    51. H. R. Chandrasekhar, R. G. Humphreys, U. Zwick, and M. Cardona,“Infrared and Raman spectra of the IV-VI compounds SnS and SnSe”,Phys. Rev. B, 15, 2177-2182,(1977)
    52. Kuo-Chin Hsu, Yaw-Shyan Fu, Pei-Ying Lin, I-Tseng Tang, Jiunn-Der Liao Hindawi,“Fabrication and Characterization of CuInSe2 Thin Film Applicable for a Solar Energy Light Absorption Material via a Low Temperature Solid State Reaction”, International Journal of Photoenergy, 156964,1-7,(2013)
    53. V. Izquierdo-Roca, A. Pérez-Rodríguez, A. Romano-Rodríguez, and J. R. Morante,” Raman microprobe characterization of electrodeposited S-rich CuIn(S,Se)2 for photovoltaic applications: Microstructural analysis”, J. Appl. Phys.,101, 103517,(2007)
    54. Jin Chang , Eric R. Waclawik, “Controlled synthesis of CuInS2, Cu2SnS3 and Cu2ZnSnS4 nano-structures: insight into the universal phase-selectivity mechanism”,CrystEngComm, 15, 5612–5619, (2013)
    55. C.B. Song, Y.L. Zhao, D.M. Song, L. Zhu, X.Q. Gu, Y.H. Qiang,“Dye-sensitized Solar Cells Based on TiO2 Nanotube/Nanoparticle Composite as Photoanode and Cu2SnSe3 as Counter Electrode” , Int. J. Electrochem. Sci., 9,3158 – 3165, (2014)
    56. MahshidAhmadi, Stevin S. Pramana, Sudip K. Batabyal, Chris Boothroyd, Subodh G. Mhaisalkar,Yeng Ming Lam,“Synthesis of Cu2SnSe3 Nanocrystals for Solution Processable Photovoltaic Cells”,Inorg. Chem., 52, 1722−1728,(2013)
    57. R. A. Becerra, J. M. Correa, H. Suarez and G. Gordillo,“One-step diffusion membrane assisted CBD synthesis and characterization of Cu2SnS3 Thin films” ,21st Latin American Symposium on Solid State Physics Journal of Physics: Conference Series, 480, 012008, (2014)
    58. Michelle E.Norako, Matthew J. Greaney, and Richard L. Brutchey, “Synthesis and Characterization of Wurtzite-Phase Copper Tin Selenide Nanocrystals” ,J. Am. Chem.Soc., 134, 23-26,(2012)

    6.1.7 Reference in Chapter 6
    1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%”, Prog. PhotovoltaicsRes.Appl.,19, 894-897, (2011)
    2.D.B. Mitzi, O. Gunawan, T.K.Todorov, K. Wang, S. Guha, “The path towards a high-performance solution-processed kesterite solar cell”,Sol. Energy Mater. Sol. Cells, 95, 1421-1436, (2011)
    3. S.Siebentritt,S.Schorr, “A challenging material for solar cells”,Prog.PhotovoltaicsRes. Appl.,20, 512-519, (2012)
    4.N.Aihara, H. Araki, A. Takeuchi, K.Jimbo, H.Katagiri, “Fabrication of Cu2SnS3 thin films by sulfurization of evaporated Cu-Sn precursors for solar cells”, Phys. Status Solidi C ,10, 1086-1092, (2013)
    5. P. Zhao, S. Cheng, “Influence of Sulfurization Temperature on Photoelectric Properties Cu2SnS3 Thin Films Deposited by Magnetron Sputtering”,Adv. Mater. Sci. Eng., 726080-726084, (2013)
    6. K. Chino, J. Koike, S.Eguchi, H. Araki,R. Nakamura,K.Jimbo, H.Katagiri, “Preparation of Cu2SnS3 Thin Films by Sulfurization of Cu/Sn Stacked Precursors”, J. J. Appl.Phy.,51, 10NC35, (2012)
    7. Y. Tan, Z. Lin, W. Ren, W. Long, Y. Wang, X. Ouyang, “Facile solvothermal synthesis of Cu2SnS3 architectures and their visible-light-driven photocatalytic properties”,Mater.Lett. ,89, 240-242, (2012)
    8.T. Nomura, T. Maeda,T. Wada, “Fabrication of Cu2SnS3 solar cells by screen-printing and high-pressure sintering process”,J. J. Appl.Phy.,53 , 05FW01, (2014)
    9.J. Han, Y. Zhou, Y.Tian, Z. Huang, X. Wang, J.Zhong, Z. Xia, B. Yang, H. Song, J.Tang, ”Hydrazine processed Cu2SnS3 thin film and their application for photovoltaic devices”,Front.Optoelectron.,7, 37-45, (2014)
    10.L.L.Baranowski, P.Zawadzki, S. Christensen, D.Nordlund, S.Lany, A.C.Tamboli, L.Gedvilas, D.S.Ginley, W.Tumas, E.S.Toberer, A.Zakutayev, “Control of Doping in Cu2SnS3 through Defects and Alloying”, Chem. Mater.,26,( 4951-4959, 2014)
    11.M.Fiechter, G.Martinez, W.Schmidt, Y.Henrion, J. Tomm, “Phase relations and optical properties of semiconducting ternary sulfides in the system Cu–Sn–S”,J.Phy. Chem. Solids ,64,1859-1862, (2003)
    12.P.A.Fernandes, P.M.P. Salomé1, A.F. da Cunha, “Study of Ternary Cu2SnS3 and Cu3SnS4 Thin Films Prepared by Sulfurizing Stacked Metal Precursors”,J. Physics D: Appl.Phy.,43 , 215403, (2010)
    13.H.Zhang, M.Xie, S. Zhang, Y.Xiang, “Fabrication of highly crystallized Cu2SnS3 thin films throughsulfurization of Sn-rich metallic precursors”,J. Alloy. Compd.,602,199-203, (2014)
    14.D.H.Kuo, W.D.Haung , Y.S. Huang, J.D. Wu, Y.J. Lin, “Single-step sputtered Cu2SnSe3films using the targets composed of Cu2Se and SnSe2”,Thin Solid Films ,518, 7218-7221, (2010)
    15.C.J. Wang, S.C.Shei, S.J.Chang, “Synthesis and characterization of CZTSe nanoinks using polyetheramine as solvent”,Opt. Mater. Exp.,4,1593-1600, (2014)
    16.R.Xie, M. Rutherford,X.Peng, “Formation of High-Quality I-III-VI Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors”, J. Am. Chem. Soc. ,131, 5691-5697, (2009)
    17.M. Steichen, R.Djemour, L.Gütay, J.Guillot, S.Siebentritt, P.J. Dale, “Direct Synthesisof Single-Phase p Type SnS by Electrodeposition from a Dicyanamide Ionic Liquid at High Temperature for Thin Film Solar Cells”, J. Phys. Chem. C, 117,4383-4393, (2013)
    18.H. Guan, H.Shen, C.Gao, X.He, “The influence of annealing atmosphere on the phase formation of Cu–Sn–S ternary compound by SILAR method”, J. Mater. Sci.: Mater.Electron.,24, 3195-3198, (2013)
    19.R. Schurr, A. Hölzing, R. Hock, “Real-time investigations on the formation reactions during annealing of sulfurized Cu-Sn precursors”, Thin Solid Films ,519, 7412-7415, (2011)
    20.P.A.Fernandesa, P.M.P.Saloméa, A.F. da Cunha,“Study of polycrystalline Cu2ZnSnS4 films by Raman scattering ”,J. Alloy. Compd.,509,7600-7606,(2011)
    21.U. Chalapathi, Y. Jayasree, S. Uthanna, V.S. Raja, “Effect of annealing temperature on the properties of spray deposited Cu2SnS3 thin films”,Phys. Status Solidi A,210 , 2384-2390, (2013)
    22.S. Sohila, M. Rajalakshmi, C.Ghosh, A.K. Arora, C. Muthamizhchelvan, “Optical and Raman scattering studies on SnS nanoparticles”, J. Alloy. Compd.,509, 5843-5847, (2011)
    23.B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, C.J. Chunnilall, “Raman spectra of thin solid films of some metal sulfides”,J. Mol.Struct.,410-411 ,,267-270, (1997)
    24.L.L.Baranowski, K. McLaughlin, P.Zawadzki, S.Lany, A. Norman, H.Hempel, R.Eichberger, T.Unold, E.S.Toberer, A.Zakutayev, “Effects of Disorder on Carrier Transport in Cu2SnS3”,Phys. Rev. App. ,4, 044017, (2015)
    25.Z. Tang, Y.Nukui, K.Kosaka, N.Ashida, H.Uegaki, T.Minemoto, “Reduction of secondary phases in Cu2SnSe3 absorbers for solar cell application”,J. Alloy. Compd., 608,213-219, (2014)

    7.1.6 Reference in Chapter 7
    1. A. de Kergommeaux, J. Faure-Vincent, A.Pron, R. de Bettignies, P. Reiss, “SnS thin films realized from colloidal nanocrystal inks”,Thin Solid Films ,535, 376–379,(2013)
    2. S. Hori, T. Suzuki, T. Suzuki, T. Suzuki, S.Nonomura,“Synthesis and characterization of tin monosulfide nanosheets”,J. J. Appl. Phys. ,53,021801,(2014)
    3. C.Gao, H.Shen, L. Sun, Z.Shen, Chemical bath deposition of SnS films with different crystal structures,Mater.Lett.,65,1413–1415,, (2011)
    4. S.K. Panda, S. Gorai, S. Chaudhuri, “Shape selective solvothermal synthesis of SnS: Role ofethylenediamine–water solvent system”,Mater. Sci. Eng. B,129, 265–269,(2006)
    5. H. Zhu, D. Yang, H. Zhang, “Hydrothermal synthesis, characterization and properties of SnS nanoflowers”,Mater.Lett.,60, 2686–2689,(2006)
    6. O. E. Ogah, K. R. Reddy, G.Zoppi, I. Forbes, R. W. Milesv, “Annealing studies and electrical properties of SnS-based solar cells“,Thin Solid Films, 519, 7425–7428,(2011)
    7.F. Jiang, H.Shen, C.Gao, B. Liu, L. Lin, Z.Shen, “Preparation and properties of SnS film grown by two-stage process”,Appl. Surf.Sci.,257, 4901–4905,(2011)
    8.P.Sinsermsuksakul, J.Heo, W. Noh, A. S. Hock, R. G. Gordon,“Atomic Layer Deposition of Tin Monosulfide Thin Films”,Adv. Energ.Mater.,1 , 1116–1125,(2011)
    9. H. Tang, J. Yu, X. Zhao,“Solvothermal synthesis of novel dendrite-like SnS particles in a mixed solvent of ethylenediamine and dodecanethiol”,J. Alloy. Compd., 460, 513–518,(2008)
    10. R. Chandrasekharan, “Numerical Modeling of Tin Based Absorber Devices for Cost Effective Solar Photovoltaics”, the Graduate School John and Willie Leone,Family Department of Energy and Mineral Engineering, The PennsylvaniaState University ,(2012)
    11.V.R.Minnam Reddy, G. Sreedevi, P.Chinho, R.Miles,R. Reddy K.T,”Development of sulphurizedSnS thin film solar cells”,Curr. Appl. Phys.,15, 588-598,(2015)
    12. M. Patel, I.Mukhopadhyay, A. Ray,“Annealing influence over structural and optical properties of sprayed SnSthin films”,Opt. Mater. ,35,1693–1699,(2013)
    13.L.L. Cheng, M.H. Liu, M.X. Wang, S.C. Wang, G.D. Wang, Q.Y. Zhou, Z.Q. Chen,“Preparation of SnS films using solid sources deposited by the PECVD method with controllable film characters”,J. Alloy. Compd.,545, 122–129,(2012)
    14.X.H. Ma, K.H. Cho, Y.M. Sung,“Growth mechanism of vertically aligned SnSe
    nanosheets via physical vapour deposition”,Cryst. Eng. Comm.,16,5080–5086, (2014)
    15.L. Rena, Z. Jin, W.Wanga, H.Liua, J. Lai, J. Yang, Z. Hong, “Preparation and characterization of SnS nanocrystals by a triethanolamine-assisted diethylene glycol solution synthesis”,Appl. Surf. Sci.,258, 1353-1358,(2011)
    16.J.Xu,Y. Yang,Z.Xie, “Fabrications of SnS thin films and SnS-based heterojunctions
    on flexible polyimide substrates”,J. Mater. Sci.: Mater.Electron.,25, 3028–3033,(2014)
    17.Burton,Diego Colombara,Ruben D. Abellon,Ferdinand C. Grozema,Laurence M. Peter,Tom J. Savenije,Gilles Dennler,and Aron Walsh,”Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, Sn2S3, and SnS2” ,Chem. Mater.,25,(24), 4908–4916,(2013)

    8.4 Reference in chapter 8
    1. Tove Ericson, Jonathan J. Scragg, Tomas Kubart, TobiasTorndahl, Charlotte Platzer-Bjorkman, “Annealing behaviour of reactively sputteredprecursor films for Cu2ZnSnS4 solar cells”, Thin Solid Films,535, 1 22–26,(2012)
    2. R. B. V. Chalapathy ,Subrata Das1,Jeng-Shin Ma,Jen-Cheng Sung,Chung-Hsin Lu,” Characterization of Cu2ZnSnSe4 (CZTSe) nanoparticles synthesized via solvothermal method for solar cell applications”, J Mater Sci: Mater Electron,26, 7673–7682,(2015)
    3. P.M.P. Salomé,J. Malaquias,P.A. Fernandes,M.S. Ferreira,A.F. da Cunha,J.P. LeitãoJ.C. González,F.M. Matinaga,“Growth and characterizationof Cu2ZnSn(S,Se)4 thin films for solar cells”, Solar Energy Materials andSolar Cells, 101, 147–153,2012
    4. Carolin M. Fella , Alexander R.Uhl a, Ceri Hammond , Ive Hermans , Yaroslav E.Romanyuk , Ayodhya N. Tiwari ,”Formation mechanism of Cu2ZnSnSe4 absorber layers during selenization of solution deposited metal precursors” , Journal of Alloys and Compounds ,567 ,102–106, (2013)
    5. Lide, CRC Handbook of Chemistry and Physics, CRC Press, FL, USA (2009)
    6. Wan-Ching Hsu , Ingrid Repins , Carolyn Beall , Clay DeHart , Glenn Teeter , Bobby To , Yang Yang , Rommel Nouf,”The effect of Zn excess on kesterite solar cells , Solar Energy Materials & Solar Cells, 113,160–164, (2013)
    7. Yanyan Cao, Michael S. Denny, Jr., Jonathan V. Caspar, William E. Farneth, Qijie Guo, Alex S. Ionkin, Lynda K. Johnson, Meijun Lu, Irina Malajovich, Daniela Radu, H. David Rosenfeld,Kaushik Roy Choudhury, and Wei Wu,”High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles” ,J. Am. Chem. Soc., 134, 38, 15644–15647, (2012)
    8. Roland Mainz,Bryce C. Walker,b Sebastian S. Schmidt,Ole Zander,Alfons Weber,aHumberto Rodriguez-Alvarez,za Justus Just,Manuela Klaus,Rakesh Agrawalb and Thomas Unolda, “ Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors” ,Phys.Chem. Chem. Phys.,15, 18281, (2013)
    9. Jie Zhang, Bo Long, Shuying Cheng, and Weibo Zhang, “Effects of Sulfurization Temperature on Properties of CZTS Films by Vacuum Evaporation and Sulfurization Method”, International Journal of Photoenergy,Volume 2013 , 6 pages
    10. H. Matsushita, T. Maeda, A. Katsui, T. Takizawa, “Thermal Analysis and Synthesis from the Melts of Cu-Based Quaternary Compounds Cu-III-IV-VI4 and Cu2-II-IV-VI4 (II=Zn, Cd; III=Ga, In; IV=Ge, Sn; VI=Se)”,J. Cryst. Growth, 208, 416-422, (2000)
    11. 11.M. I. AMAL, K. H. KIM,”OPTICAL PROPERTIES OF SELENIZED Cu2ZnSnSe4 FILMS FROM A Cu-Zn-Sn METALLIC PRECURSOR”, Chalcogenide Letters ,9, 8, 345 – 353, (2012)
    12. Tung-Cheng Liu, Yi Hu,”Preparation and Characterization of CZTSe Films through Electrochemical Deposition Route”,Int. J. Electrochem. Sci., 9, 2985 – 2992, (2014)
    13. M.A. Olgara, Y. Atasoya, B.M. Başolb, M. Tomakinc, G. Aygund, L. Ozyuzerd, E. Bacaksız,”Influence of copper composition and reaction temperature on the properties of CZTSe thin films”,Journal of Alloys and Compounds, 682,15,610–617, (2016)
    14. Moges Tsega, Dong-Hau Kuo, “The performance of the donor and acceptor doping in the Cu-rich Cu2ZnSnSe4 bulks with different Zn/Sn ratios”,Solid StateCommunications,164,42–46,(2013)
    15. Hitoshi Tampo , Kikuo Makita, Hironori Komaki, Akimasa Yamada, Shigenori Furue, Shogo Ishizuka,Hajime Shibata, Koji Matsubara, Shigeru Niki, “Composition control of Cu2ZnSnSe4-based solar cells grownby coevaporation”, Thin Solid Films ,551, 27–31, (2014)
    16. Moges Tsega, Dong-Hau Kuo,” The performance of the donor and acceptor doping in the Cu-rich Cu2ZnSnSe4 bulks with different Zn/Sn ratios”,Solid State Communications,164, 42–46,(2013)
    17. Shannon C. Riha, Sarah J. Fredrick, Justin B. Sambur, Yuejiao Liu, Amy L. Prieto, B. A. Parkinson ,”Photoelectrochemical Characterization of Nanocrystalline Thin-Film Cu2ZnSnS4 Photocathodes”,ACS Appl. Mater. Interfaces, 3 (1), 58–66, (2011)]
    18. Jing Wang, Peng Zhang, Xuefeng Song and Lian Gao,”Surfactant-free hydrothermal synthesis of Cu2ZnSnS4 (CZTS) nanocrystals with photocatalytic properties”,RSC Adv., 4, 27805,(2014)
    19. Feng Jiang, Honglie Shen,”Research on the photoresponse current and photosensitive properties of Cu2ZnSnS4 thin film prepared by sulfurization of a sputtered metal precursor”,RSC Adv., 3, 23474, (2013)
    20. Murali Banavoth, Sandra Dias, and S. B. Krupanidhi,:Near-infrared photoactive Cu2ZnSnS4 thin films by co-sputtering:, AIP ADVANCES,3, 082132, (2013)
    21. Priya Kush,Sasanka DekaJ,”Photoelectrical properties of surfactant-free kesterite Cu2ZnSnSe4 hydrophilic nanocrystal ink and the stability in polar solvents”, Nanopart Res,16,2600, (2014)
    22. Güven Turgut, Eyüp Fahri Keskenler, Serdar Aydın, Seydi Doga, Songül Duman, SSeyma Özçelik, Bekir Gürbulak, and Bayram EsenPhys ,”Fabrication and characterization of Al/Cu2ZnSnS4/n-Si/,Al heterojunction photodiodes”, Status Solidi ,A, 1–7, (2013)
    23. Qing Zhang, Meng Cao,Wang Sheng Gao, Jin Yang, Jie Sheng Shen, Jian Huang, Yan Sun,Lin Jun Wang, Yue Shen ,”Phase-selective and photoactivity investigation of solvothermal synthesized Cu2ZnSnS4 nanoparticles”,Materials and Design, 91, 37–45, (2016)
    24. Michelle E. Norako, Matthew J. Greaney, and Richard L. Brutchey,” Synthesis and Characterization of Wurtzite-Phase Copper Tin Selenide Nanocrystals”, J. Am. Chem.Soc., 134, 23−26,(2012)
    25. Prashant Kumar Sarswat ,”ALTERNATIVE METHODS TO FABRICATE AND EVALUATE COPPER ZINC TIN SULFIDE BASED ABSORBER LAYERS ON TRANSPARENT CONDUCTING ELECTRODES “, The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Metallurgical Engineering ,( 2012)
    26. Shiyou Chen, X. G. Gong, Aron Walsh, Su-Huai Wei,” Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4”, APPLIED PHYSICS LETTERS 96, 021902 ,(2010)
    27. Nordin Sabli1, Zainal Abidin Talib1, Wan Mahmood Mat Yunus1, Zulkarnain Zainal, Hikmat S. Hilal3, Masatoshi Fujii New Technique for Efficiency Enhancement of Film Electrodes Deposited by Argon Gas Condensation from Metal Chalcogenide Sources Int. J. Electrochem. Sci., 8 (2013) 12038 – 12050
    28. Qing Zhang, Meng Cao,Wang Sheng Gao, Jin Yang, Jie Sheng Shen, Jian Huang , Yan Sun,Lin Jun Wang , Phase-selective and photoactivity investigation of solvothermal synthesized Cu2ZnSnS4 nanoparticles, Yue Shen,Materials & DesignVolume 91, 37–45, 2016
    29. Wei Wang,Mark T. Winkler,Oki Gunawan,Tayfun Gokmen,Teodor K. Todorov,Yu Zhu,David B. Mitzi ,Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency , Adv. Energy Mater, 4, 1301465, (2014)
    30. Carolin M. Fella, Yaroslav E. Romanyuk, Ayodhya N. Tiwari,”Technological status of Cu2ZnSn(S,Se)4 thin film solar cells,Solar Energy Materials and Solar Cells”,119, 276–277, (2013)
    31. Yanyan Cao, Michael S. DennyJr., Jonathan V. Caspar, William E. Farneth, Qijie Guo, 220 ,”High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles”,J. Am. Chem. Soc., 134 (38), 15644–15647, (2012)
    32. Maykel Courel , J.A. Andrade-Arvizu, O. Vigil-Galan ,Loss mechanisms influence on Cu2ZnSnS4/CdS-based thin film solar cellperformance,Solid-State Electronics 111, 243–250, (2015) - Ana Kanevce,IngridRepins,Su-HuaiWei ,Impact of bulk properties and local secondary phases on the Cu2(Zn,Sn)Se4 solar cells open-circuit voltage,Solar Energy Materials&Solar Cells,133, 119–125, (2015)
    33. Jian-Wei Du, Shih-Chang Shei,” Selenization of Cu2ZnSnSe4 thin films by rapid thermal processing”,IEEE ,2015 International Symposium on Next-Generation Electronics (ISNE),1-3,(2015)
    34. Jun He, Jiahua Tao, Xiankuan Meng, Yuchen Dong, Kezhi Zhang, Lin Sun, Pingxiong Yang, Junhao Chu.” Effect of selenization time on the growth of Cu2ZnSnSe4 thin films obtained from rapid thermal processing of stacked metallic layers”, Materials Letters,126,1-4,(2014)
    35. A. Mousel, M. Djemour, R. Gutay, L. Valle, N. Siebentritt, " Influence of thickness and annealing temperature on the electrical,optical and structural properties of AZO thin films," Vacuum , 89, 127−131, (2013)
    36. N. Muhunthan, Om Pal Singh, M. K. Thakur,1 P. Karthikeyan,1 Dinesh Singh, M. Saravanan, V. N. Singh,” Interfacial Properties of CZTS Thin Film Solar Cell”, Journal of Solar Energy , 476123, 8,(2014)
    37. Mikhail TIVANOV, Lev ASTASHENOK , Alexander FEDOTOV, " Effect of absorbing layer thickness on efficiency solar cells based on Cu(In,Ga)(S,Se)2," PRZEGLĄD ELEKTROTECHNICZNY ISSN, 0033−2097, (2012)
    38. Devendra Tiwari, TapasK.Chaudhuri, T.Shripathi, UDeshpande, R.Rawat,” Non-toxic,earth-abundant 2% efficient Cu2SnS3 solar cell based on tetragonal films direct-coated from singlemetal-organic precursor solution”, Solar Energy Materials & Solar Cells ,113 ,165–170,(2013)

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE