簡易檢索 / 詳目顯示

研究生: 黃怡玲
Huang, Yi-Ling
論文名稱: 過氯酸鋰/乙二醇碳酸酯/聚丙烯凝膠導電性之分子模擬
Molecular Simulations of the Conductivities in LiClO4/Ethylene Carbonate/Poly(acrylonitrile) Gels
指導教授: 施良垣
Shy, Liang-Yuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系碩士在職專班
Department of Chemistry (on the job class)
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 101
中文關鍵詞: 過氯酸鋰聚丙烯乙二醇碳酸酯分子模擬
外文關鍵詞: EC, PAN, LiClO4, Molecular Simulations
相關次數: 點閱:54下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以分子動力模擬的方法,研究LiClO4於乙二醇碳酸酯(EC)和聚丙烯腈(PAN)膠態電解質中之擴散、導電、配位及離子集結性質,模擬之溫度為298 K和338 K,鋰鹽濃度(EC:LiClO4)分別為4:1與7:1。

      在固定濃度與溫度之條件下,添加之PAN會使Li+附近之ClO4- 和EC之配位數下降,表示PAN介入Li+ 與ClO4- 離子之間,使其離子結合程度降低。當溫度固定,且PAN存在時,鋰鹽濃度之降低將導致鋰離子周圍EC分子數與C≡N官能基數增加,但ClO4- 離子數則遞減,故陰、陽離子結合程度降低。當濃度固定,且PAN存在時,溫度的升高,有利於離子對的形成,故與Li+配位之陰離子數增加。

      模擬所得之擴散係數與NMR測量值頗為接近,且導電度值也與實驗傾向一致。此外,LiClO4於EC/PAN膠態電解質中之配位及離子結合特性亦可經由本實驗模擬得知,有助於了解此電解質液之微觀現象。

     The molecular dynamics simulation method has been employed to simulate the diffusion, conductivity, coordination, and the ion association properties for lithium perchlorate (LiClO4) in ethylene carbonate (EC)/poly(acrylonitrile)(PAN) gel electrolyte. Simulations were conducted at 298 and 338 K, with a salt concentration (EC: LiClO4) of 4:1 and 7:1, respectively.

     At constant salt concentration and temperature, the addition of PAN reduces the numbers of coordinating ClO4- and EC around the lithium ions, which indicates that the intervention of PAN segments between Li+ and ClO4- ions, and thus the reduction of the extent of ion associations. At constant temperature and in the presence of PAN, the decreasing lithium salt concentration increases the numbers of coordinating EC molecules and the nitrile functional group around Li+ ions, but decrease the number of ClO4- ion and the extent of ion associations. The increase of temperature facilitates the ion-pair formation, resulting high coordination for ClO4- group.
     
     The simulated diffusion coefficients are close to those from the NMR measurement. In addition, the computed specific conductivities give the same trend with experiment. Moreover, the characteristics of coordination and ion association for LiClO4 in EC/PAN gel electrolyte are obtainable from the present simulation, which helps to understand the microscopic details of this electrolyte.

    摘 要 I Abstract II 目 錄 III 圖目錄 IV 表目錄 IX 第一章 緒 論 1 第二章 電 腦 模 擬 8 2–1 分子動力(Molecular Dynamics , MD)模擬原理 8 2–2 力 場 10 2–3 模擬條件 13 2–4 相關數據之計算 14 第三章 結 果 與 討 論 18 3–1 擴散係數與導電度的關係 18 3–2 徑向分佈函數圖之分析 37 (A) 添加PAN之影響 42 (B) 鋰鹽濃度的效應 51 (C) 溫度效應之影響 60 3–3 離子群聚的分析 69 第四章 結 論 76 附錄A 80 附錄B 89

    (1)J. Hajek, French Patent, 8, 101949 (1949).
    (2)M. Winter, J. O. Besenhard, M. E. Spahr and P. Nova’ Adv. Mater., 10, 725 (1998).
    (3)W. Wieczrek, K. Such, Z. Florjanczyk and J. R. Stevens, J. Phys. Chem., 98, 6840 (1994).
    (4)D. E. Fenton, J. M. Parker and P. V. Wright, Polymer, 14, 589 (1973).
    (5)P. V. Wright, Br. Polymer J., 7, 319 (1975).
    (6)H. B. Armand, S. M. Chabagno and M Duclot, in: Sec International Meeting on Solid Electrolytes, St. Andr , Scotland, Extended Abstracts, 20-22 Sept. (1978).
    (7)G. Feullade and P. Perche, J. Appl. Electrochem., 5, 63 (1975).
    (8)O. Bohnke, C. Rousselet, P. A. Gillet and C. Truche, J. Electrochem. Soc., 139, 1862-1865 (1992).
    (9)K. M. Abraham and M. Alamgir, Solid State Ionics, 70, 20 (1994).
    (10)F. Corce, S. D. Brown, S. G. Greenbaum, S. M. Slane and M. Salomon, Chem. Mater., 5, 1268-1272 (1993).
    (11)P. E. Stallworth, J. Li, S. G. Greenbaum, F. Croce and S. Slane, Soild State Ionics, 73, 119-126 (1994).
    (12)C. Y. Chiang, Y. J. Shen, M. Jaipal Reddy and Petter P. Chu, J. Power Sources, 123, 222 (2003).
    (13)M. J. Williamson, J. P. Southall, H. V. St. A. Hubbard, G. R. Davies and I. M. Ward, Polymer, 40, 3945 (1999).
    (14)I. M. Ward, M. J. Williamson, H. V. St .A. Hubbard, J. P. Southall and G. R. Davies, J. Power Sources, 81, 700 (1999).
    (15)D. Peramunage, D. M. Pasquariello and K. M. Abraham, J. Electrochem. Soc., 142, 1789 (1995).
    (16)M. Alamgir and K. M. Abraham, J. Electrochem. Soc., 140, 196 (1993).
    (17)H. S. Choe, J. Giaccai, M. Alamgir and K. M. Abraham, Electrochem. Acta, 40, 13-14, 2289 (1995).
    (18)郭信德, 碩士論文, 過氯酸鋰於有機溶劑中導電性之電腦模擬, 國立成功大學, (2000).
    (19)陳晏銜, 碩士論文, 過氯酸鋰在乙二醇碳酸酯/碳酸丙稀混合溶液中導電性之電腦模擬, 國立成功大學, (2001).
    (20)郭人華, 碩士論文, 聚乙醚電解質溶液導電性之分子模擬, 國立成功大學, (2002).
    (21)魏至偉, 碩士論文, 鏈長對於聚乙醚- LiCF3SO3錯合物之離子結合之影響:分子動力模擬, 國立成功大學, (2002).
    (22)黃建中, 碩士論文, LiCF3SO3於有機溶劑中導電性之分子模擬, 國立成功大學, (2003).
    (23)顏詩瑋, 碩士論文, LiCF3SO3/DMF/PCDF凝膠導電性之分子模擬, 國立成功大學, (2004).
    (24)I. Nicotera, C. Oliviero, G. Ranieri and A. Spadafora, J. Chem. Phys., 117(15), 7373 (2002).
    (25)“Polymer user guide”, version 6.0, San Diego: Biosym Technologies, (1993).
    (26)“Discover user guide”, version 4.0, San Diego: Biosym Technologies, (1996).
    (27)D. N. Theodorou, and U. W. Suter, Macromolecules, 18, 1206 (1985).
    (28)J. N. Baskir and U. W. Suter, Macromolecules, 21, 1877 (1988).
    (29)“Discover user guide”, version 4.0, Part 1, San Diego: Biosym Technologies, (1996).
    (30)R. Naejus, C. Damas, D. Lemordant, R. Coudert and P. Willmann, J. Chem. Thermodymics, 34, 795-806 (2002).
    (31)G. E. Blomgren, “Lithium Batteries”, Academic Press, London, 112 (1983).
    (32)M. Ratner. “Polymer electrolyte Reviews-1”, Elserier Applied Science, London, 173 (1987).
    (33)M. Castriota, E. Cazzanelli, I. Nicotera, L. Coppola, C. Oliviero and G. A. Ranieri, J. Chem. Phys., 118(12), 5537(2003)
    (34)E. Tocci, D. Hofmann1, D. Paulb, N. Russo and E. Driolia, Polymer, 42, 521 (2001).
    (35)E. Kucukpinar and P. Doruker, Polymer, 44, 3607 (2003).
    (36)R. H. Fuoss, J. Am. Chem. Soc., 57, 2604 (1935).
    (37)L. D. Pettit and S. Bruckenstein, J. Am. Chem. Soc., 88, 4783(1966).

    下載圖示 校內:2007-07-25公開
    校外:2007-07-25公開
    QR CODE