簡易檢索 / 詳目顯示

研究生: 古曼凱
Guzman, John Mello Camille C.
論文名稱: 利用含多孔性水凝膠之毛細管發展基於尺寸之簡易比色法篩檢生物指標蛋白
A Colorimetric Diagnostic Capillary Enabled by Size Sieving in a Porous Hydrogel for Facile Biomarker Detection
指導教授: 莊漢聲
Chuang, Han-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 58
中文關鍵詞: 多孔性水凝膠免疫分析法生物標誌物脂蛋白LCN-1比色法金奈米粒子
外文關鍵詞: Porous hydrogel, Immunoassay, Biomarker, Lipocalin 1, Colorimetry, Gold nanoparticles
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在資源有限的地區,使用方便、一次性的定點照護檢測(POCT)能有助於及早篩檢及避免嚴重疾病發生。而藉由進一步的定量分析可以進行更準確的診斷,而非僅單純的陰性、陽性二分法。本研究開發一種能藉由簡易比色法的診斷裝置,以達到快速檢測檢體中的生物標誌物(biomarker)的目的,此裝置包含免疫微珠(immunocomplexed microbeads, dp = 40 µm)、表面修飾含有抗體的金奈米粒子AuNP和含有45 μm孔徑之多孔性水凝膠(porous hydrogel)之毛細管(capillary tube)。在所提出的方法中,當目標生物標記物存在時,具功能性的金奈米粒子會附著在直徑較大的免疫微珠上,形成”金奈米粒子-生物標誌物-免疫微珠”型態之三明治結構免疫複合物。之後將其注入多孔性水凝膠的玻璃毛細管中,使其通過多孔性水凝膠,再由玻璃毛細管頂端的海綿吸收液體提供驅動的流力,幫助後續檢體完全流過多孔水凝膠進行尺寸篩選。當帶有金奈米粒子的免疫複合物聚集形成較大的體積時,會因而阻塞而留於多孔水凝膠入口端處。此時該處將會隨生物標誌物濃度上升而有逐漸加深的紅色產生。量化部份,我們使用智慧手機拍攝裝置對應不同濃度的目標生物標記物造成的顏色的變化,並使用影像分析軟體進行精確的定量分析。最終研究結果顯示,本技術僅需1 µL的檢體,檢測極限(LOD)即能達到200 ng / mL且與使用常規分光光度計獲得的濃度測量值相比,準確性已可達79%。此外,我們也透過從比較臨床眼淚檢體中因糖尿病性視網膜病變所產生的生物標記物脂蛋白Lipocalin-1(LCN-1)濃度變化來做評估。結果中發現所有健康受試者眼淚檢體中的LCN-1水平皆低於其他糖尿病受試者(PDR或NPDR患者),證明了該設備的實用性與驗證本技術在臨床應用中的潛力。總體而言,本研究開發之毛細管診斷裝置可實現居家照護,並為資源有限的地區提供低成本、簡單且可靠的早期診斷工具。

    Handy and disposable point-of-care diagnostics facilitate early screening of severe diseases in resource-limited areas. To support the urgent needs demanded in the inconvenient sites, a simple colorimetric diagnostic device consisting of a capillary tube, immunocomplexed particles, and a porous hydrogel was developed herein to realize rapid detection of biomarkers in bioanalytes. In the proposed approach, functionalized gold nanoparticles would attach to large capture particles (dp=40 µm) to form sandwiched immunocomplexes in the presence of target biomarkers. A porous hydrogel with a pore size of 45 µm was filled inside a glass capillary for size sieving. A dark red color would progressively emerge when the sandwiched immunocomplexed particles were blocked by the porous hydrogel because of the aggregated gold nanoparticles. The visible colorimetric aggregation was also recorded using a smartphone and analyzed with imaging software. The limit of detection of the technique eventually reached 200 ng/mL. Only 1 µL of sample fluid was required for the detection. It was shown that the proposed detection could reach 79% accuracy compare to those obtained using conventional spectrophotometry technique. The practicability of the proposed device was demonstrated by measuring a diabetic retinopathy biomarker, Lipocalin-1 (LCN-1), from human tear. All healthy subjects showed lower intensity levels than the other diabetic counterparts (PDR or NPDR patients), implying the potential of the technique used in clinical applications. Overall, the diagnostic platform presented in this study promotes the point-of-care-testing and provides a low-cost, compact, and reliable tool for early diagnosis in resource-limited areas.

    摘要 I ABSTRACT II ACKNOWLEDGEMENTS III TABLE OF CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VIII LIST OF EQUATIONS IX CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION AND OVERVIEW 1 1.2 MICROFLUIDIC DETECTION 3 1.3 POINT-OF-CARE TESTING 5 1.4 SMARTPHONE-BASED DEVICES 6 1.5 DIABETIC RETINOPATHY (DR) 10 1.5.1 Diabetic Retinopathy Diagnosis 12 1.6 AIM AND CONTRIBUTION OF THE THESIS 13 CHAPTER 2 – MATERIALS AND METHODS 16 2.1 REAGENTS 16 2.2 SAMPLE COLLECTION 18 2.3 ASSEMBLY OF DIAGNOSTIC CAPILLARY WITH A POROUS HYDROGEL 19 2.4 PREPARATION OF SANDWICHED IMMUNOSENSOR 21 2.4.1 Functionalization of Capture Particles 21 2.4.2 Functionalization of Probe Particles 21 2.4.3 Formation of Sandwiched Immunocomplexes 22 2.5 ANALYSIS FOR THE DIAGNOSTIC CAPILLARY 23 2.5.1 Capillary-Based Colorimetry 23 2.5.2 A Measurement Platform for Quantitative Reading 25 2.5.3 Image Analysis 27 2.5.4 Statistical Analysis 27 CHAPTER 3 – RESULTS AND DISCUSSION 28 3.1 FORMATION OF POROUS HYDROGEL 28 3.2 SANDWICHED IMMUNOCOMPLEX DETECTION 30 3.3 ASSESSMENTS OF DIRECT COLORIMETRIC VISUALIZATION 32 3.4 QUANTITATIVE ASSESSMENTS WITH THE MEASUREMENT PLATFORM 34 3.5 BINDING SPECIFICITY AND STABILITY 36 3.6 DETECTION OF BIOMARKER LCN-1 IN CLINICAL TEAR SAMPLES 38 CHAPTER 4 – CONCLUSION 41 CHAPTER 5 – LIMITATIONS AND FUTURE WORK 43 REFERENCES 45 APPENDICES 51 APPENDIX A: MATLAB CODE FOR RGB AND CIE 1931 51 Appendix A.1 MATLAB GUI code for RGB and CIE 1931 52 APPENDIX B: OPTIMIZATION OF PS PARTICLES AND AUNPS RATIO 54 APPENDIX C: CIE 1931 COLORIMETRIC AGGREGATION COLOR SPACE 55 APPENDIX D: VOLUNTEERS FOR CLINICAL DETECTION 56 Appendix D.1: Healthy volunteers’ questionnaire 56 Appendix D.2: OCT of PDR patient 57 Appendix D.3: OCT of NPDR patient 58

    [1] World Health Organization. "Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003," July 15, 2020; https://www.who.int/csr/sars/country/table2004_04_21/en/.
    [2] World Health Organization. "MERS situation update, July 2018," July 15, 2020; http://www.emro.who.int/pandemic-epidemic-diseases/mers-cov/mers-situation-update-july-2018.html.
    [3] A. Mirzaie, M. Halaji, F. S. Dehkordi et al., “A narrative literature review on traditional medicine options for treatment of corona virus disease 2019 (COVID-19),” Complementary Therapies in Clinical Practice, vol. 40, pp. 101214, 2020/08/01/, 2020.
    [4] H. S. Chuang, Y. J. Chen, and H. P. Cheng, “Enhanced diffusometric immunosensing with grafted gold nanoparticles for detection of diabetic retinopathy biomarker tumor necrosis factor-α,” Biosensors and Bioelectronics, vol. 101, pp. 75-83, Mar 15, 2018.
    [5] K. L. Cox, V. Devanarayan, A. Kriauciunas et al., Immunoassay Methods: Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda (MD), 2004.
    [6] J. M. Drijvers, I. M. Awan, C. A. Perugino et al., "Chapter 7 - The Enzyme-Linked Immunosorbent Assay: The Application of ELISA in Clinical Research," Basic Science Methods for Clinical Researchers, M. Jalali, F. Y. L. Saldanha and M. Jalali, eds., pp. 119-133, Boston: Academic Press, 2017.
    [7] T. R. Kozel, and A. R. Burnham-Marusich, “Point-of-Care Testing for Infectious Diseases: Past, Present, and Future,” Journal of Clinical Microbiology, vol. 55, no. 8, pp. 2313-2320, Aug, 2017.
    [8] S. K. Vashist, and J. H. T. Luong, "Chapter 1 - Immunoassays: An Overview," Handbook of Immunoassay Technologies, S. K. Vashist and J. H. T. Luong, eds., pp. 1-18: Academic Press, 2018.
    [9] L. M. Fu, W. J. Ju, C. C. Liu et al., “Integrated microfluidic array chip and LED photometer system for sulfur dioxide and methanol concentration detection,” Chemical Engineering Journal, vol. 243, pp. 421-427, 2014.
    [10] W. J. Ju, L. M. Fu, R. J. Yang et al., “Distillation and detection of SO2 using a microfluidic chip,” Lab on a Chip, vol. 12, no. 3, pp. 622-6, Feb 7, 2012.
    [11] C.-Y. Lee, W.-T. Wang, C.-C. Liu et al., “Passive mixers in microfluidic systems: A review,” Chemical Engineering Journal, vol. 288, pp. 146-160, 2016/03/15/, 2016.
    [12] C.-H. Lin, Y.-N. Wang, and L.-M. Fu, “Integrated microfluidic chip for rapid DNA digestion and time-resolved capillary electrophoresis analysis,” Biomicrofluidics, vol. 6, no. 1, pp. 12818-1281811, 2012.
    [13] C. H. Tsai, C. H. Lin, L. M. Fu et al., “High-performance microfluidic rectifier based on sudden expansion channel with embedded block structure,” Biomicrofluidics, vol. 6, no. 2, pp. 24108-241089, Jun, 2012.
    [14] Y. N. Wang, C. C. Liu, R. J. Yang et al., “Microfluidic distillation chip for methanol concentration detection,” Analytica Chimica Acta, vol. 912, pp. 97-104, Mar 17, 2016.
    [15] F. Zhang, D. Gao, and Q.-L. Liang, “Advances of Microfluidic Technologies Applied in Bio-analytical Chemistry,” Chinese Journal of Analytical Chemistry, vol. 44, no. 12, pp. 1942-1949, 2016/12/01/, 2016.
    [16] S. Haeberle, and R. Zengerle, “Microfluidic platforms for lab-on-a-chip applications,” Lab on a Chip, vol. 7, no. 9, pp. 1094-1110, 2007.
    [17] D. Caputo, A. de Angelis, N. Lovecchio et al., “Amorphous silicon photosensors integrated in microfluidic structures as a technological demonstrator of a “true” Lab-on-Chip system,” Sensing and Bio-Sensing Research, vol. 3, pp. 98-104, 2015/03/01/, 2015.
    [18] L.-M. Fu, W.-J. Ju, R.-J. Yang et al., “Rapid prototyping of glass-based microfluidic chips utilizing two-pass defocused CO2 laser beam method,” Microfluidics and Nanofluidics, vol. 14, no. 3, pp. 479-487, 2013/03/01, 2013.
    [19] P. Smejkal, M. C. Breadmore, R. M. Guijt et al., “Separation of carboxylic acids in human serum by isotachophoresis using a commercial field-deployable analytical platform combined with in-house glass microfluidic chips,” Analytica Chimica Acta, vol. 755, pp. 115-20, Nov 28, 2012.
    [20] X. Fan, C. Jia, J. Yang et al., “A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells,” Biosensors and Bioelectronics, vol. 71, pp. 380-386, Sep 15, 2015.
    [21] C. Kunstmann-Olsen, M. M. Hanczyc, J. Hoyland et al., “Uniform droplet splitting and detection using Lab-on-Chip flow cytometry on a microfluidic PDMS device,” Sensors and Actuators B: Chemical, vol. 229, pp. 7-13, 2016/06/28/, 2016.
    [22] M. Masrie, B. Y. Majlis, and J. Yunas, “Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection,” Bio-Medical Materials and Engineering, vol. 24, no. 6, pp. 1951-8, 2014.
    [23] C. Yavuz, S. N. B. Oliaei, B. Cetin et al., “Sterilization of PMMA microfluidic chips by various techniques and investigation of material characteristics,” The Journal of Supercritical Fluids, vol. 107, pp. 114-121, 2016/01/01/, 2016.
    [24] S. Ahmed, M. P. Bui, and A. Abbas, “Paper-based chemical and biological sensors: Engineering aspects,” Biosensors and Bioelectronics, vol. 77, pp. 249-63, Mar 15, 2016.
    [25] M. Dou, S. T. Sanjay, M. Benhabib et al., “Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms,” Talanta, vol. 145, pp. 43-54, Dec 1, 2015.
    [26] F. Pena-Pereira, I. Lavilla, and C. Bendicho, “Paper-based analytical device for instrumental-free detection of thiocyanate in saliva as a biomarker of tobacco smoke exposure,” Talanta, vol. 147, pp. 390-6, Jan 15, 2016.
    [27] Y. Xia, J. Si, and Z. Li, “Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review,” Biosensors and Bioelectronics, vol. 77, pp. 774-89, Mar 15, 2016.
    [28] E. W. Nery, and L. T. Kubota, “Sensing approaches on paper-based devices: a review,” Analytical and Bioanalytical Chemistry, vol. 405, no. 24, pp. 7573-95, Sep, 2013.
    [29] A. K. Yetisen, M. S. Akram, and C. R. Lowe, “Paper-based microfluidic point-of-care diagnostic devices,” Lab on a Chip, vol. 13, no. 12, pp. 2210-2251, 2013.
    [30] D. M. Cate, J. A. Adkins, J. Mettakoonpitak et al., “Recent developments in paper-based microfluidic devices,” Analytical Chemistry, vol. 87, no. 1, pp. 19-41, Jan 6, 2015.
    [31] R. H. Müller, and D. L. Clegg, “Automatic Paper Chromatography,” Analytical Chemistry, vol. 21, no. 9, pp. 1123-1125, 1949/09/01, 1949.
    [32] A. I. Barbosa, P. Gehlot, K. Sidapra et al., “Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device,” Biosensors and Bioelectronics, vol. 70, pp. 5-14, Aug 15, 2015.
    [33] Y. Chen, Y. Zilberman, P. Mostafalu et al., “Paper based platform for colorimetric sensing of dissolved NH3 and CO2,” Biosensors and Bioelectronics, vol. 67, pp. 477-484, 2015/05//, 2015.
    [34] D. Martins, R. Levicky, and Y. A. Song, “Enhancing the speed of morpholino-DNA biosensor by electrokinetic concentration of DNA in a microfluidic chip,” Biosensors and Bioelectronics, vol. 72, pp. 87-94, Oct 15, 2015.
    [35] Y. Tan, T. Tang, H. Xu et al., “High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system,” Biosensors and Bioelectronics, vol. 73, pp. 32-40, Nov 15, 2015.
    [36] F. F. Bier, and S. Schumacher, “Integration in bioanalysis: technologies for point-of-care testing,” Advances in Biochemical Engineering/Biotechnology, vol. 133, pp. 1-14, 2013.
    [37] V. Gubala, L. F. Harris, A. J. Ricco et al., “Point of Care Diagnostics: Status and Future,” Analytical Chemistry, vol. 84, no. 2, pp. 487-515, 2012/01/17, 2012.
    [38] S. T. Phillips, and G. G. Lewis, “The expanding role of paper in point-of-care diagnostics,” Expert Review of Molecular Diagnostics, vol. 14, no. 2, pp. 123-5, Mar, 2014.
    [39] A. W. Martinez, S. T. Phillips, G. M. Whitesides et al., “Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices,” Analytical Chemistry, vol. 82, no. 1, pp. 3-10, 2010/01/01, 2010.
    [40] S. Sharma, J. Zapatero-Rodriguez, P. Estrela et al., “Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics,” Biosensors (Basel), vol. 5, no. 3, pp. 577-601, Aug 13, 2015.
    [41] Y. Song, Y.-Y. Huang, X. Liu et al., “Point-of-care technologies for molecular diagnostics using a drop of blood,” Trends in Biotechnology, vol. 32, no. 3, pp. 132-139, 2014.
    [42] H. Chen, K. Liu, Z. Li et al., “Point of care testing for infectious diseases,” Clinica Chimica Acta, vol. 493, pp. 138-147, 2019/06/01/, 2019.
    [43] J. Yang, K. Wang, H. Xu et al., “Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review,” Talanta, vol. 202, pp. 96-110, 2019/09/01/, 2019.
    [44] C. D. Chin, T. Laksanasopin, Y. K. Cheung et al., “Microfluidics-based diagnostics of infectious diseases in the developing world,” Nature Medicine, vol. 17, no. 8, pp. 1015-9, Jul 31, 2011.
    [45] J.-Y. Wang, J.-S. Kwon, S.-M. Hsu et al., “Sensitive tear screening of diabetic retinopathy with dual biomarkers enabled using a rapid electrokinetic patterning platform,” Lab on a Chip, vol. 20, no. 2, pp. 356-362, 2020/01//, 2020.
    [46] S. Wang, F. Inci, G. De Libero et al., “Point-of-care assays for tuberculosis: role of nanotechnology/microfluidics,” Biotechnology Advances, vol. 31, no. 4, pp. 438-449, Jul-Aug, 2013.
    [47] T.-T. Wang, C. k. Lio, H. Huang et al., “A feasible image-based colorimetric assay using a smartphone RGB camera for point-of-care monitoring of diabetes,” Talanta, vol. 206, pp. 120211, 2020/01/01/, 2020.
    [48] D. N. Breslauer, R. N. Maamari, N. A. Switz et al., “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PloS One, vol. 4, no. 7, pp. e6320, 2009.
    [49] R. D. Stedtfeld, D. M. Tourlousse, G. Seyrig et al., “Gene-Z: a device for point of care genetic testing using a smartphone,” Lab on a Chip, vol. 12, no. 8, pp. 1454-1462, 2012.
    [50] I. Navruz, A. F. Coskun, J. Wong et al., “Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array,” Lab on a chip, vol. 13, no. 20, pp. 4015-4023, 2013.
    [51] H. C. Koydemir, Z. Gorocs, D. Tseng et al., “Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning,” Lab on a Chip, vol. 15, no. 5, pp. 1284-1293, 2015.
    [52] T. S. Park, S. Cho, T. G. Nahapetian et al., “Smartphone Detection of UV LED-Enhanced Particle Immunoassay on Paper Microfluidics,” SLAS TECHNOLOGY: Translating Life Sciences Innovation, vol. 22, no. 1, pp. 7-12, 2017/02/01, 2016.
    [53] A. Priye, S. W. Bird, Y. K. Light et al., “A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses,” Scientific Reports, vol. 7, no. 1, pp. 44778, 2017/03/20, 2017.
    [54] M. Zarei, “Portable biosensing devices for point-of-care diagnostics: Recent developments and applications,” TrAC Trends in Analytical Chemistry, vol. 91, pp. 26-41, 2017/06/01/, 2017.
    [55] V. Oncescu, D. O'Dell, and D. Erickson, “Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva,” Lab on a Chip, vol. 13, no. 16, pp. 3232-8, Aug 21, 2013.
    [56] X. Qiu, S. Zhang, F. Xiang et al., “Instrument-free point-of-care molecular diagnosis of H1N1 based on microfluidic convective PCR,” Sensors and Actuators B: Chemical, vol. 243, pp. 738-744, 2017/05/01/, 2017.
    [57] B. Shu, C. Zhang, and D. Xing, “A handheld flow genetic analysis system (FGAS): towards rapid, sensitive, quantitative and multiplex molecular diagnosis at the point-of-care level,” Lab on a Chip, vol. 15, no. 12, pp. 2597-2605, 2015.
    [58] S. K. Vashist, P. B. Luppa, L. Y. Yeo et al., “Emerging Technologies for Next-Generation Point-of-Care Testing,” Trends in Biotechnology, vol. 33, no. 11, pp. 692-705, Nov, 2015.
    [59] D. Pascolini, and S. P. Mariotti, “Global estimates of visual impairment: 2010,” British Journal of Ophthalmology, vol. 96, no. 5, pp. 614-8, May, 2012.
    [60] C. Hernández, and R. Simó, “Neuroprotection in diabetic retinopathy,” Current Diabetes Reports, vol. 12, no. 4, pp. 329-37, Aug, 2012.
    [61] S. F. Abcouwer, “Angiogenic Factors and Cytokines in Diabetic Retinopathy,” Journal of Clinical and Cellular Immunology, vol. Suppl 1, no. 11, pp. 1-12, 2013.
    [62] I. M. Ferreira de Melo, C. G. Martins Ferreira, E. H. Lima da Silva Souza et al., “Melatonin regulates the expression of inflammatory cytokines, VEGF and apoptosis in diabetic retinopathy in rats,” Chemico-Biological Interactions, vol. 327, pp. 109183, 2020/06//, 2020.
    [63] G. Danaei, M. M. Finucane, Y. Lu et al., “National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants,” The Lancet, vol. 378, no. 9785, pp. 31-40, Jul 2, 2011.
    [64] S. E. Moss, R. Klein, S. D. Kessler et al., “Comparison between ophthalmoscopy and fundus photography in determining severity of diabetic retinopathy,” Ophthalmology, vol. 92, no. 1, pp. 62-7, Jan, 1985.
    [65] L. C. Rodríguez García, A. Gómez de Cádiz Villarreal, J. Pérez Rivas et al., “Implantación del cribado de retinopatía diabética mediante retinografía digital en atención primaria,” Atencion Primaria, vol. 45, no. 3, pp. 149-156, 2013.
    [66] C. D. Jones, R. H. Greenwood, A. Misra et al., “Incidence and progression of diabetic retinopathy during 17 years of a population-based screening program in England,” Diabetes Care, vol. 35, no. 3, pp. 592-6, Mar, 2012.
    [67] T. E. de Carlo, M. A. Bonini Filho, A. T. Chin et al., “Spectral-domain optical coherence tomography angiography of choroidal neovascularization,” Ophthalmology, vol. 122, no. 6, pp. 1228-38, Jun, 2015.
    [68] T. E. de Carlo, A. Romano, N. K. Waheed et al., “A review of optical coherence tomography angiography (OCTA),” International Journal of Retina and Vitreous, vol. 1, no. 1, pp. 5, 2015/04/15, 2015.
    [69] R. F. Spaide, J. M. Klancnik, Jr, and M. J. Cooney, “Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography,” JAMA Ophthalmology, vol. 133, no. 1, pp. 45-50, 2015.
    [70] A. Ishibazawa, T. Nagaoka, A. Takahashi et al., “Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study,” American Journal of Ophthalmology, vol. 160, no. 1, pp. 35-44.e1, 2015.
    [71] K. Sambhav, K. K. Abu-Amero, and K. V. Chalam, “Deep Capillary Macular Perfusion Indices Obtained with OCT Angiography Correlate with Degree of Nonproliferative Diabetic Retinopathy,” European Journal of Ophthalmology, vol. 27, no. 6, pp. 716-729, 2017/11/08, 2017.
    [72] J. M. B. de Barros Garcia, D. L. C. Isaac, and M. Avila, “Diabetic retinopathy and OCT angiography: clinical findings and future perspectives,” International Journal of Retina and Vitreous, vol. 3, no. 1, pp. 14, 2017/03/13, 2017.
    [73] B. Beigi, D. Gupta, Y. H. L. Luo et al., “Punctal function in lacrimal drainage: the ‘pipette sign’ and functional ectropion,” Clinical and Experimental Optometry, vol. 98, no. 4, pp. 366-369, 2015.
    [74] A. Posa, L. Bräuer, M. Schicht et al., “Schirmer strip vs. capillary tube method: Non-invasive methods of obtaining proteins from tear fluid,” Annals of Anatomy - Anatomischer Anzeiger, vol. 195, no. 2, pp. 137-142, 2013.
    [75] R. van Dommelen, P. Fanzio, and L. Sasso, “Surface self-assembly of colloidal crystals for micro- and nano-patterning,” Advances in Colloid and Interface Science, vol. 251, pp. 97-114, 2018/01/01/, 2018.
    [76] K. L. Maki, and S. Kumar, “Fast Evaporation of Spreading Droplets of Colloidal Suspensions,” Langmuir, vol. 27, no. 18, pp. 11347-11363, 2011/09/20, 2011.
    [77] O. Pluchery, H. Remita, and D. Schaming, “Demonstrative experiments about gold nanoparticles and nanofilms: an introduction to nanoscience,” Gold Bulletin, vol. 46, no. 4, pp. 319-327, 2013/12/01, 2013.
    [78] É. Csősz, P. Boross, A. Csutak et al., “Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy,” Journal of Proteomics, vol. 75, no. 7, pp. 2196-204, Apr 3, 2012.

    無法下載圖示 校內:2023-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE