| 研究生: |
朱靖媗 Chu, Ching-Hsuan, |
|---|---|
| 論文名稱: |
雙物質構成熱學超材料之四邊形排列研究 Investigation of Bi-Material Arrangement Using Quadrilateral Thermal Metamaterials |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 熱學超材料 、熱遮罩 、轉換熱學 、各向異性 |
| 外文關鍵詞: | Thermal metamaterials, Thermal cloak, Transformation thermodynamics, Anisotropy |
| 相關次數: | 點閱:237 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱學超材料所構成的熱遮罩,其遮罩性能取決於高、低熱傳導係數的物質排列方式以及層數的多寡。本研究以模擬及實驗結果兩者相互驗證,我們首先探討理想材料係數組成的四邊形熱學超材料的COMSOL模擬結果,其熱學超材料結構的排列變化與層數的多寡皆會造成溫度線分布的改變。而經由模擬結果顯示,四邊形熱學超材料的熱遮罩性能會隨著熱學超材料的層數上升而提升,我們藉由此模擬作出的結論找到理想的四邊形熱學超材料排列方式。
實驗中,我們首先檢驗熱學超材料裝置中所使用的金屬材料的熱係數,接著以量測出來的參數與理想的熱學超材料排列進行模擬分析,並同時組裝我們實作中的熱學超材料裝置,最後檢測我們模擬與實驗結果是否達到相同的溫度趨勢。結果顯示,四邊形熱學超材料有效地將中間遮罩層內的溫度梯度降低,改變了裝置的溫度特徵。本研究提出的新型熱遮罩僅需兩種不同熱傳導係數材料,做簡單組合即可達到優良的熱遮罩效果。
The efficiency of the thermal cloak which is composed of the thermal metamaterials depends on the number of layers and the staggered arrangement using two materials is investigated in this study. We conduct both simulation and the experiment. First, we discuss the simulation results using the COMSOL software with ideal materials coefficients of the quadrilateral thermal metamaterials. The arrangement of its structures and the layer numbers of the thermal metamaterials would cause different isotherm distribution. Based on above results, we find the optimal arrangement of our quadrilateral thermal metamaterials.
In the experiment, we examine the thermal coefficients of those metal materials using the Hot Disk Thermal Constants Analyzer. Then, we implement the measured thermal parameters to the COMSOL simulation models. At the same time, we assemble the quadrilateral thermal metamaterials, setup experiment and then measure the temperature field using an infrared camera. The results show, the designed thermal device efficiently decreases the temperature gradient of cloaked area enclosed by the thermal metamaterials. The novel design demonstrates a great effect of the thermal cloaking by simply using two materials.
Amin, M., Putra, N., Kosasih, E. A., Prawiro, E., Luanto, R. A., & Mahlia, T. M. I., Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl. Therm. Eng. 112, 273-280 (2017).
Bandaru, P. R., Vemuri, K. P., Canbazoglu, F. M., & Kapadia, R. S., Layered thermal metamaterials for the directing and harvesting of conductive heat. AIP Adv. 5 (5), 053403 (2015).
Bruggeman, D. A. G., Dielectric constant and conductivity of mixtures of isotropic materials. Ann. Phys.(Leipzig) 24, 636-679 (1935).
Buchanan, M., Focus: A Thermostat that Consumes No Energy. Physics 9, 89 (2016).
Bückmann, T., Kadic, M., Schittny, R., & Wegener, M., Mechanical cloak design by direct lattice transformation. Proc. Natl. Acad. Sci. 112 (16), 4930-4934 (2015).
Chen, T. Y., Weng, C. N., Chen, J. S., Cloak for curvilinearly anisotropic media in conduction. Appl. Phys. Lett. 93, 114103 (2008).
Deng, H., Wang, T., Gao, J., & Yang, X., Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics. J. Opt. 16 (3), 035102 (2014).
Guenneau, S., Amra, C., & Veynante, D., Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express. 20, 8207(2012).
Han, T., Bai, X., Gao, D., Thong, J. T., Li, B., & Qiu, C. W., Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014).
Kadic, M., Bückmann, T., Schittny, R., & Wegener, M., Experiments on cloaking in optics, thermodynamics and mechanics. Phil. Trans. R. Soc. A 373 (2049), 20140357 (2015).
Leonhardt, U., Optical conformal mapping. Science 312, (5781), 1777-1780 (2006).
Li, J. Y., Gao, Y., & Huang, J. P., A bifunctional cloak using transformation media. J. Appl. Phys. 108 (7), 074504 (2010)
Li, Y., Bai, X., Yang, T., Luo, H., & Qiu, C. W., Structured thermal surface for radiative camouflage. Nat. Commun. 9 (1) 273 (2018).
Liu, D. P., Chen, P. J., & Huang, H. H., Realization of a thermal cloak–concentrator using a metamaterial transformer. Sci. Rep. 8 (1), 2493, (2018).
Liu, Y., Guo, W., & Han, T., Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations. Int. J. Heat Mass Transfer. 115, 1-5 (2017).
Maxwell-Garnett, J. C., Colours in metal glasses and metal films. Philos. Trans. R. Soc. Lond. 203, 385 (1904).
Maxwell-Garnett, J. C., VII. Colours in metal glasses, in metallic films, and in metallic solutions.—II. Phil. Trans. R. Soc. Lond. A 205 (387-401), 237-288 (1906).
Narayana, S., Savo, S., & Sato, Y., Transient heat flux shielding using thermal metamaterials. Appl. Phys. Lett. 102 (20), 201904 (2013).
Pendry, J. B., Schurig, D., & Smith, D. R., Controlling electromagnetic fields. Science 312, 1780-1782 (2006).
Schittny, R., Kadic, M., Guenneau, S., & Wegener, M., Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110 (19), 195901 (2013).
Shen, X., Jiang, C., Li, Y., & Huang, J., Thermal metamaterial for convergent transfer of conductive heat with high efficiency. Appl. Phys. Lett. 109, 201906 (2016a).
Shen, X., Li, Y., Jiang, C., & Huang, J., Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change. Phys. Rev. Lett. 117 (5), 055501 (2016b).
Tso, C. Y., & Chao, C. Y., Solid-state thermal diode with shape memory alloys. Int. J. Heat Mass Transfer. 93, 605-611 (2016).
Vemuri, K. P., & Bandaru, P. R., Geometrical considerations in the control and manipulation of conductive heat flux in multilayered thermal metamaterials. Appl. Phys. Lett. 103, 133111 (2013).
Veselago, V. G., The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509 (1968)
Yang, T., Wu, Q., Xu, W., Liu, D., Huang, L., & Chen, F., A thermal ground cloak. Phys. Lett. A. 380, 965-969 (2016).
Zhang, X., Metamaterials for perpetual cooling at large scales. Science 355 (6329), 1023-1024 (2017).
Zheng, R., Gao, J., Wang, J., & Chen, G., Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions. Nat. Commun. 2, 289 (2011).