| 研究生: |
文光宇 Wen, Kuang-Yu |
|---|---|
| 論文名稱: |
Zfra在調控由WWOX下調引起的癲癇發作中的作用 Role of Zfra in mitigating epileptic seizure due to WWOX downregulation |
| 指導教授: |
張南山
Chang, Nan-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 腫瘤抑制蛋白雙色胺酸結構愈氧化還原酶 (WWOX) 、調節細胞凋亡的鋅指狀蛋白 (Zfra) 、癲癇 、戊四氮酮Pentylenetetrazol (PTZ) 、Z細胞 |
| 外文關鍵詞: | WWOX, Epilepsy, Zfra, Pentylenetetrazol (PTZ), Z cells |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類WWOX基因位於染色體常見的易斷裂位點FRA16D並常伴隨頻繁的缺失。近親婚姻的孩童中常有染色體隱性遺傳異常所導致的WWOX基因突變與功能喪失,並發現缺少WWOX基因容易形成癲癇性腦病、頑固性癲癇發作、發育遲緩以及人和動物新生兒的早期死亡。研究中,我們發現小鼠中Wwox基因的定向破壞對藥物戊四氮(PTZ)誘發的癲癇發作具有較高的敏感性,野生Wwox + / +小鼠的最高劑量為40mg / kg,Wwox +/-小鼠的極限值為30mg / kg。短合成肽Zfra(調節細胞凋亡的鋅指狀蛋白)可明顯減輕小鼠的癲癇發作。在組織學檢查中,Zfra防止頂葉皮質和海馬神經元缺失。施打Zfra的小鼠在聽覺皮層和海馬區增加了WWOX的表達並抑制了pS14-WWOX。從機理中,Zfra阻斷了PTZ誘導的小鼠海馬中炎性小膠質細胞和星形膠質細胞的活化。 PTZ強烈誘導在Wwox + / -小鼠中神經炎性細胞因子(如iNOS,COX2,NLRP3和IFN-γ),並被Zfra顯著抑制。此外,Zfra還阻斷了RE1沉默轉錄因子(REST)的表達,該因子是離子通道和神經遞質受體的調節劑,可通過抑制諸如GRIA2,GABRB3和GRIN2B等下游基因來防止癲癇發生。 Zfra在Wwox + / -小鼠中顯著上調了GRIA2。 Zfra通過增加Synapsin-1和Synaptophysin的水平恢復了神經元傳遞。通過共同免疫沉澱(Co-IP),WWOX和REST與CREB-1發生相互作用,而CREB-1在癲癇中起關鍵作用。 Zfra降低了CREB-1與WWOX和REST在小鼠大腦中的結合。另外,我們從3隻C57BL / 6小鼠中分離脾細胞,並處理Zfra以刺激稱為Z細胞的脾細胞活化。通過流式細胞儀細胞分選,分離Z細胞並轉移至Wwox + / +和Wwox + / -小鼠。令人驚訝的是,Wwox + / +小鼠賦予了對PTZ誘發的癲癇發作的抵抗力。總之,我們的觀察結果表明Zfra肽是緩解WWOX缺乏引起的癲癇發作的有效藥物。
Human WWOX gene spans a stretch of 1.1-million DNA bases in the chromosomal common fragile site FRA16D. Loss of function mutations in both alleles of WWOX gene is closely related to autosomal recessive abnormalities in pediatric patients from consanguineous families, including epileptic encephalopathy, intractable seizures, developmental delay and death in human newborns. Here, we report that targeted disruption of Wwox gene in mice caused increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Compared to wild type mice, lower doses of PTZ are needed to induce seizure in Wwox heterozygous mice, suggesting WWOX confers resistance to seizure. A short synthetic peptide zinc finger like protein that regulates apoptosis (Zfra) significantly reduces PTZ-induced seizure in mice. In histological examination, Zfra prevents neuronal loss from PTZ-induced cell death in the parietal cortex and hippocampus. Mice receiving Zfra have increased WWOX expression and suppressed WWOX phosphorylation at Ser14 in auditory cortex and hippocampal regions. Zfra blocks PTZ-induced activation of inflammatory microglia and astrocytes in the mouse hippocampus. Neuroinflammatory cytokines, including iNOS, COX2, NLRP3 and IFN-γ are induced significantly by PTZ (>50-80%), and are significantly decreased by Zfra in Wwox+/- mice. Also, Zfra blocks the expression of an inflammatory protein RE1-silencing transcription factor (REST). Zfra significantly upregulates GRIA2 in Wwox+/- mice and restores neuronal transmission via increasing the level of Synapsin-1 and Synaptophysin. By co-immunoprecipitation, WWOX and REST physically interact with CREB-1, suggesting their roles in epilepsy. Zfra decreases the binding of CREB-1 with WWOX and REST in the brain. Naïve spleen cells from C57BL/6 mice are treated with Zfra overnight, followed by Z cell purification by cell sorting. Activated Z cells are transferred to Wwox+/+ and Wwox+/- mice via tail vein injections, and shown to conferred resistance to PTZ-induced seizure in Wwox+/+ mice. Together, WWOX protein suppresses seizure, and both Zfra and its-activated Z cells contribute, in part, to mitigate seizure.
REFERENCE
1. Bednarek, A. K., Laflin, K. J., Daniel, R. L., Liao, Q., Hawkins, K. A., and Aldaz, C. M. (2000) WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23. 3–24.1, a region frequently affected in breast cancer. Cancer Res. 60, 2140-2145
2. Ried, K., Finnis, M., Hobson, L., Mangelsdorf, M., Dayan, S., Nancarrow, J. K., Woollatt, E., Kremmidiotis, G., Gardner, A., and Venter, D. (2000) Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum. Mol. Genet. 9, 1651-1663
3. Chang, N.-S., Pratt, N., Heath, J., Schultz, L., Sleve, D., Carey, G. B., and Zevotek, N. (2001) Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J. Biol. Chem. 276, 3361-3370
4. McDonald, C. B., Buffa, L., Bar-Mag, T., Salah, Z., Bhat, V., Mikles, D. C., Deegan, B. J., Seldeen, K. L., Malhotra, A., and Sudol, M. (2012) Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors. J. Mol. Biol. 422, 58-74
5. Jörnvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J., and Ghosh, D. (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34, 6003-6013
6. Filling, C., Berndt, K. D., Benach, J., Knapp, S., Prozorovski, T., Nordling, E., Ladenstein, R., Jörnvall, H., and Oppermann, U. (2002) Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J. Biol. Chem. 277, 25677-25684
7. Chang, N.-S., Hsu, L.-J., Lin, Y.-S., Lai, F.-J., and Sheu, H.-M. (2007) WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol. Med. 13, 12-22
8. Reuven, N., Shanzer, M., and Shaul, Y. (2015) Tyrosine phosphorylation of WW proteins. Exp. Biol. Med. (Maywood) 240, 375-382
9. Huang, S. S., Hsu, L. J., and Chang, N. S. (2020) Functional role of WW domain‐containing proteins in tumor biology and diseases: Insight into the role in ubiquitin‐proteasome system. FASEB BioAdvances 2, 234-253
10. Paige, A. J., Taylor, K. J., Taylor, C., Hillier, S. G., Farrington, S., Scott, D., Porteous, D. J., Smyth, J. F., Gabra, H., and Watson, J. V. (2001) WWOX: a candidate tumor suppressor gene involved in multiple tumor types. Proc. Natl. Acad. Sci. U.S.A. 98, 11417-11422
11. Driouch, K., Prydz, H., Monese, R., Johansen, H., Lidereau, R., and Frengen, E. (2002) Alternative transcripts of the candidate tumor suppressor gene, WWOX, are expressed at high levels in human breast tumors. Oncogene 21, 1832-1840
12. Li, C., Berx, G., Larsson, C., Auer, G., Aspenblad, U., Pan, Y., Sundelin, B., Ekman, P., Nordenskjöld, M., and Van Roy, F. (1999) Distinct deleted regions on chromosome segment 16q23–24 associated with metastases in prostate cancer. Genes, Chromosomes and Cancer 24, 175-182
13. Chen, S.-T., Chuang, J., Wang, J., Tsai, M., Li, H., and Chang, N.-S. (2004) Expression of WW domain-containing oxidoreductase WOX1 in the developing murine nervous system. Neuroscience 124, 831-839
14. Chang, H.-T., Liu, C.-C., Chen, S.-T., Yap, Y. V., Chang, N.-S., and Sze, C.-I. (2014) WW domain-containing oxidoreductase in neuronal injury and neurological diseases. Oncotarget 5, 11792
15. Aldaz, C. M., Ferguson, B. W., and Abba, M. C. (2014) WWOX at the crossroads of cancer, metabolic syndrome related traits and CNS pathologies. Biochim. Biophys. Acta Rev. Cancer 1846, 188-200
16. Tochigi, Y., Takamatsu, Y., Nakane, J., Nakai, R., Katayama, K., and Suzuki, H. (2019) Loss of Wwox causes defective development of cerebral cortex with hypomyelination in a rat model of lethal dwarfism with epilepsy. Int. J. Mol. Sci. 20, 3596
17. Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., Naj, A. C., Boland, A., Vronskaya, M., Van Der Lee, S. J., and Amlie-Wolf, A. (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414-430
18. Sze, C.-I., Su, M., Pugazhenthi, S., Jambal, P., Hsu, L.-J., Heath, J., Schultz, L., and Chang, N.-S. (2004) Down-regulation of WW domain-containing oxidoreductase induces tau phosphorylation in vitro a potential role in ALZHEIMER'S disease. J. Biol. Chem. 279, 30498-30506
19. Kümmel, D., Müller, J. J., Roske, Y., Misselwitz, R., Büssow, K., and Heinemann, U. (2005) The structure of the TRAPP subunit TPC6 suggests a model for a TRAPP subcomplex. EMBO reports 6, 787-793
20. Gwynn, B., Smith, R. S., Rowe, L. B., Taylor, B. A., and Peters, L. L. (2006) A mouse TRAPP-related protein is involved in pigmentation. Genomics 88, 196-203
21. Sacher, M., Kim, Y. G., Lavie, A., Oh, B. H., and Segev, N. (2008) The TRAPP complex: insights into its architecture and function. Traffic 9, 2032-2042
22. Chang, J.-Y., Lee, M.-H., Lin, S.-R., Yang, L.-Y., Sun, H. S., Sze, C.-I., Hong, Q., Lin, Y.-S., Chou, Y.-T., and Hsu, L.-J. (2015) Trafficking protein particle complex 6A delta (TRAPPC6AΔ) is an extracellular plaque-forming protein in the brain. Oncotarget 6, 3578
23. Lee, M., Lin, S., Chang, J., Schultz, L., Heath, J., Hsu, L.-J., Kuo, Y.-M., Hong, Q., Chiang, M., and Gong, C. (2010) TGF-β induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid β plaques in Alzheimer's disease. Cell Death Dis. 1, e110-e110
24. Chang, N.-S., Mattison, J., Cao, H., Pratt, N., Zhao, Y., and Lee, C. (1998) Cloning and characterization of a novel transforming growth factor-β1-induced TIAF1 protein that inhibits tumor necrosis factor cytotoxicity. Biochem. Biophys. Res. Commun. 253, 743-749
25. Lin, H.-P., Chang, J.-Y., Lin, S.-R., Lee, M.-H., Huang, S.-S., Hsu, L.-J., and Chang, N.-S. (2011) Identification of an in vivo MEK/WOX1 complex as a master switch for apoptosis in T cell leukemia. Genes Cancer 2, 550-562
26. Wang, H.-Y., Juo, L.-I., Lin, Y., Hsiao, M., Lin, J., Tsai, C., Tzeng, Y., Chuang, Y., Chang, N.-S., and Yang, C. (2012) WW domain-containing oxidoreductase promotes neuronal differentiation via negative regulation of glycogen synthase kinase 3 β. Cell Death Differ. 19, 1049-1059
27. Chen, S.-T., Chuang, J.-I., Cheng, C.-L., Hsu, L.-J., and Chang, N.-S. (2005) Light-induced retinal damage involves tyrosine 33 phosphorylation, mitochondrial and nuclear translocation of WW domain-containing oxidoreductase in vivo. Neuroscience 130, 397-407
28. Lo, C. P., Hsu, L. J., Li, M. Y., Hsu, S. Y., Chuang, J. I., Tsai, M. S., Lin, S. R., Chang, N. S., and Chen, S. T. (2008) MPP+‐induced neuronal death in rats involves tyrosine 33 phosphorylation of WW domain‐containing oxidoreductase WOX1. Eur. J. Neurosci. 27, 1634-1646
29. Valduga, M., Philippe, C., Lambert, L., Bach-Segura, P., Schmitt, E., Masutti, J. P., François, B., Pinaud, P., Vibert, M., and Jonveaux, P. (2015) WWOX and severe autosomal recessive epileptic encephalopathy: first case in the prenatal period. J. Hum. Genet. 60, 267-271
30. Alkhateeb, A. M., Aburahma, S. K., Habbab, W., and Thompson, I. R. (2016) Novel mutations in WWOX, RARS2, and C10orf2 genes in consanguineous Arab families with intellectual disability. Metab. Brain Dis. 31, 901-907
31. Tabarki, B., Al Mutairi, F., and Al Hashem, A. (2015) The fragile site WWOX gene and the developing brain. Exp. Biol. Med. (Maywood) 240, 400-402
32. Abdel-Salam, G., Thoenes, M., Afifi, H. H., Körber, F., Swan, D., and Bolz, H. J. (2014) The supposed tumor suppressor gene WWOX is mutated in an early lethal microcephaly syndrome with epilepsy, growth retardation and retinal degeneration. Orphanet J. Rare Dis. 9, 12
33. Chang, N.-S. (2015) Introduction to a thematic issue for WWOX. Exp. Biol. Med. (Maywood) 240, 281-284
34. Mallaret, M., Synofzik, M., Lee, J., Sagum, C. A., Mahajnah, M., Sharkia, R., Drouot, N., Renaud, M., Klein, F. A., and Anheim, M. (2014) The tumour suppressor gene WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation. Brain 137, 411-419
35. Cheng, Y.-Y., Chou, Y.-T., Lai, F.-J., Jan, M.-S., Chang, T.-H., Jou, I.-M., Chen, P.-S., Lo, J.-Y., Huang, S.-S., and Chang, N.-S. (2020) Wwox deficiency leads to neurodevelopmental and degenerative neuropathies and glycogen synthase kinase 3β-mediated epileptic seizure activity in mice. Acta Neuropathol. Commun. 8, 1-16
36. White, S., Hewitt, J., Turbitt, E., Van Der Zwan, Y., Hersmus, R., Drop, S., Koopman, P., Harley, V., Cools, M., and Looijenga, L. (2012) A multi-exon deletion within WWOX is associated with a 46, XY disorder of sex development. EUR. J. HUM. GENET. 20, 348-351
37. Mignot, C., Lambert, L., Pasquier, L., Bienvenu, T., Delahaye-Duriez, A., Keren, B., Lefranc, J., Saunier, A., Allou, L., and Roth, V. (2015) WWOX-related encephalopathies: delineation of the phenotypical spectrum and emerging genotype-phenotype correlation. J. Med. Genet. 52, 61-70
38. Ben-Salem, S., Al-Shamsi, A. M., John, A., Ali, B. R., and Al-Gazali, L. (2015) A novel whole exon deletion in WWOX gene causes early epilepsy, intellectual disability and optic atrophy. J. Mol. Neurosci. 56, 17-23
39. Tabarki, B., AlHashem, A., AlShahwan, S., Alkuraya, F. S., Gedela, S., and Zuccoli, G. (2015) Severe CNS involvement in WWOX mutations: description of five new cases. Am. J. Med. Genet. A 167, 3209-3213
40. Ludes-Meyers, J. H., Kil, H., Parker-Thornburg, J., Kusewitt, D. F., Bedford, M. T., and Aldaz, C. M. (2009) Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene. PLoS One 4, e7775
41. Hsu, L.-J., Schultz, L., Mattison, J., Lin, Y.-S., and Chang, N.-S. (2005) Cloning and characterization of a small-size peptide Zfra that regulates the cytotoxic function of tumor necrosis factor by interacting with JNK1. Biochem. Biophys. Res. Commun. 327, 415-423
42. Hsu, L.-J., Hong, Q., Schultz, L., Kuo, E., Lin, S.-R., Lee, M.-H., Lin, Y.-S., and Chang, N.-S. (2008) Zfra is an inhibitor of Bcl-2 expression and cytochrome c release from the mitochondria. Cell. Signal. 20, 1303-1312
43. Dudekula, S., Lee, M.-H., Hsu, L.-J., Chen, S.-J., and Chang, N.-S. (2010) Zfra is a small wizard in the mitochondrial apoptosis. Aging (Albany N. Y.) 2, 1023
44. Hong, Q., Hsu, L.-J., Schultz, L., Pratt, N., Mattison, J., and Chang, N.-S. (2007) Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-κB, JNK1, p53 and WOX1 during stress response. BMC Mol. Biol. 8, 50
45. Lee, M.-H., Su, W.-P., Wang, W.-J., Lin, S.-R., Lu, C.-Y., Chen, Y.-A., Chang, J.-Y., Huang, S.-S., Chou, P.-Y., and Ye, S.-R. (2015) Zfra activates memory Hyal-2+ CD3− CD19− spleen cells to block cancer growth, stemness, and metastasis in vivo. Oncotarget 6, 3737
46. Su, W.-P., Wang, W.-J., Chang, J.-Y., Ho, P.-C., Liu, T.-Y., Wen, K.-Y., Kuo, H.-L., Chen, Y.-J., Huang, S.-S., and Subhan, D. (2020) Therapeutic Zfra4-10 or WWOX7-21 Peptide Induces Complex Formation of WWOX with Selective Protein Targets in Organs that Leads to Cancer Suppression and Spleen Cytotoxic Memory Z Cell Activation In Vivo. Cancers (Basel) 12, 2189
47. Lee, M.-H., Shih, Y.-H., Lin, S.-R., Chang, J.-Y., Lin, Y.-H., Sze, C.-I., Kuo, Y.-M., and Chang, N.-S. (2017) Zfra restores memory deficits in Alzheimer's disease triple-transgenic mice by blocking aggregation of TRAPPC6AΔ, SH3GLB2, tau, and amyloid β, and inflammatory NF-κB activation. Alzheimers Dement. (N Y) 3, 189-204
48. Liu, C.-C., Ho, P.-C., Lee, I., Chen, Y.-A., Chu, C.-H., Teng, C.-C., Wu, S.-N., Sze, C.-I., Chiang, M.-F., and Chang, N.-S. (2018) WWOX phosphorylation, signaling, and role in neurodegeneration. Front. Neurosci. 12, 563
49. Scharfman, H. E., Witter, M. P., and Schwarcz, R. E. (2000) The parahippocampal region: Implications for neurological and psychiatric diseases, New York Academy of Sciences
50. Bertram, E. H. (1997) Functional anatomy of spontaneous seizures in a rat model of limbic epilepsy. Epilepsia 38, 95-105
51. Rutecki, P. A., Grossman, R. G., Armstrong, D., and Irish-Loewen, S. (1989) Electrophysiological connections between the hippocampus and entorhinal cortex in patients with complex partial seizures. J. Neurosurg. 70, 667-675
52. Du, F., Whetsell Jr, W. O., Abou-Khalil, B., Blumenkopf, B., Lothman, E. W., and Schwarcz, R. (1993) Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy. Epilepsy Res. 16, 223-233
53. Plate, K. H., Wieser, H.-G., Yasargil, M. G., and Wiestler, O. D. (1993) Neuropathological findings in 224 patients with temporal lobe epilepsy. Acta Neuropathol. 86, 433-438
54. Spencer, S. S., and Spencer, D. D. (1994) Entorhinal‐hippocampal interactions in medial temporal lobe epilepsy. Epilepsia 35, 721-727
55. Ooi, L., and Wood, I. C. (2007) Chromatin crosstalk in development and disease: lessons from REST. Nature Reviews Genetics 8, 544-554
56. Song, Z., Zhao, D., Zhao, H., and Yang, L. (2015) NRSF: an angel or a devil in neurogenesis and neurological diseases. J. Mol. Neurosci. 56, 131-144
57. Palm, K., Belluardo, N., Metsis, M., and õnis Timmusk, T. (1998) Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. J. Neurosci. 18, 1280-1296
58. Ballas, N., Grunseich, C., Lu, D. D., Speh, J. C., and Mandel, G. (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121, 645-657
59. Johnson, D. S., Mortazavi, A., Myers, R. M., and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497-1502
60. Roopra, A., Huang, Y., and Dingledine, R. (2001) Neurological disease: listening to gene silencers. Mol. Interv. 1, 219
61. Roopra, A., Dingledine, R., and Hsieh, J. (2012) Epigenetics and epilepsy. Epilepsia 53, 2-10
62. Huang, Y., Doherty, J. J., and Dingledine, R. (2002) Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. J. Neurosci. 22, 8422-8428
63. Beaumont, T. L., Yao, B., Shah, A., Kapatos, G., and Loeb, J. A. (2012) Layer-specific CREB target gene induction in human neocortical epilepsy. J. Neurosci. 32, 14389-14401a
64. Rakhade, S. N., Yao, B., Ahmed, S., Asano, E., Beaumont, T. L., Shah, A. K., Draghici, S., Krauss, R., Chugani, H. T., and Sood, S. (2005) A common pattern of persistent gene activation in human neocortical epileptic foci. Ann. Neurol. 58, 736-747
65. Lee, B., Dziema, H., Lee, K. H., Choi, Y.-S., and Obrietan, K. (2007) CRE-mediated transcription and COX-2 expression in the pilocarpine model of status epilepticus. Neurobiol. Dis. 25, 80-91
66. Zhang, X., Odom, D. T., Koo, S.-H., Conkright, M. D., Canettieri, G., Best, J., Chen, H., Jenner, R., Herbolsheimer, E., and Jacobsen, E. (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl. Acad. Sci. U.S.A. 102, 4459-4464
67. Lonze, B. E., and Ginty, D. D. (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605-623
68. Zhu, X., Han, X., Blendy, J. A., and Porter, B. E. (2012) Decreased CREB levels suppress epilepsy. Neurobiol. Dis. 45, 253-263
69. de Armentia, M. L., Jancic, D., Olivares, R., Alarcon, J. M., Kandel, E. R., and Barco, A. (2007) cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. J. Neurosci. 27, 13909-13918
70. Impey, S., Mark, M., Villacres, E. C., Poser, S., Chavkin, C., and Storm, D. R. (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973-982
71. Liu, P., Jenkins, N. A., and Copeland, N. G. (2003) A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476-484
72. Chang, J.-Y., and Chang, N.-S. (2015) WWOX dysfunction induces sequential aggregation of TRAPPC6AΔ, TIAF1, tau and amyloid β, and causes apoptosis. Cell death discovery 1, 1-11
73. Corda, M., and Biggio, G. (1986) Proconflict effect of GABA receptor complex antagonists: reversal by diazepam. Neuropharmacology 25, 541-544
74. Yonekawa, W., Kupferberg, H., and Woodbury, D. (1980) Relationship between pentylenetetrazol-induced seizures and brain pentylenetetrazol levels in mice. Journal of Pharmacology and Experimental Therapeutics 214, 589-593
75. Corda, M., Giorgi, O., Longoni, B., Orlandi, M., and Biggio, G. (1990) Decrease in the function of the γ‐aminobutyric acid‐coupled chloride channel produced by the repeated administration of pentylenetetrazol to rats. J. Neurochem. 55, 1216-1221
76. MacDonald, R. L., and Barker, J. L. (1977) Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurones. Nature 267, 720-721
77. Wang, W.-J., Ho, P.-C., Nagarajan, G., Chen, Y.-A., Kuo, H.-L., Subhan, D., Su, W.-P., Chang, J.-Y., Lu, C.-Y., and Chang, K. T. (2019) WWOX Possesses N-Terminal Cell Surface-Exposed Epitopes WWOX7-21 and WWOX7-11 for Signaling Cancer Growth Suppression and Prevention In Vivo. Cancers (Basel) 11, 1818
78. Vezzani, A., Lang, B., and Aronica, E. (2016) Immunity and inflammation in epilepsy. Cold Spring Harb. Perspect. Med. 6, a022699
79. Roy, A., Fung, Y. K., Liu, X., and Pahan, K. (2006) Up-regulation of microglial CD11b expression by nitric oxide. J. Biol. Chem. 281, 14971-14980
80. Su, X., Kameoka, S., Lentz, S., and Majumder, S. (2004) Activation of REST/NRSF target genes in neural stem cells is sufficient to cause neuronal differentiation. Molecular and cellular biology 24, 8018-8025
81. McClelland, S., Brennan, G. P., Dubé, C., Rajpara, S., Iyer, S., Richichi, C., Bernard, C., and Baram, T. Z. (2014) The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes. Elife 3, e01267
82. McClelland, S., Flynn, C., Dubé, C., Richichi, C., Zha, Q., Ghestem, A., Esclapez, M., Bernard, C., and Baram, T. Z. (2011) Neuron‐restrictive silencer factor‐mediated hyperpolarization‐activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy. Ann. Neurol. 70, 454-465
83. Feliciano, P., Andrade, R., and Bykhovskaia, M. (2013) Synapsin II and Rab3a cooperate in the regulation of epileptic and synaptic activity in the CA1 region of the hippocampus. J. Neurosci. 33, 18319-18330
84. Boido, D., Farisello, P., Cesca, F., Ferrea, E., Valtorta, F., Benfenati, F., and Baldelli, P. (2010) Cortico-hippocampal hyperexcitability in synapsin I/II/III knockout mice: age-dependency and response to the antiepileptic drug levetiracetam. Neuroscience 171, 268-283
85. Colasante, G., Lignani, G., Rubio, A., Medrihan, L., Yekhlef, L., Sessa, A., Massimino, L., Giannelli, S. G., Sacchetti, S., and Caiazzo, M. (2015) Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell stem cell 17, 719-734
86. Teng, L., Tang, Y.-B., Sun, F., An, S.-M., Zhang, C., Yang, X.-J., Lv, H.-Y., Lu, Q., Cui, Y.-Y., and Hu, J.-J. (2013) Non-neuronal release of gamma-aminobutyric Acid by embryonic pluripotent stem cells. Stem Cells Dev. 22, 2944-2953
87. Breton-Provencher, V., Lemasson, M., Peralta, M. R., and Saghatelyan, A. (2009) Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors. J. Neurosci. 29, 15245-15257
88. Encinas, J. M., Michurina, T. V., Peunova, N., Park, J.-H., Tordo, J., Peterson, D. A., Fishell, G., Koulakov, A., and Enikolopov, G. (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell stem cell 8, 566-579
89. Pilz, G.-A., Bottes, S., Betizeau, M., Jörg, D. J., Carta, S., Simons, B. D., Helmchen, F., and Jessberger, S. (2018) Live imaging of neurogenesis in the adult mouse hippocampus. Science 359, 658-662
90. Vezzani, A., French, J., Bartfai, T., and Baram, T. Z. (2011) The role of inflammation in epilepsy. Nature reviews neurology 7, 31
91. Vezzani, A. (2014) Epilepsy and inflammation in the brain: overview and pathophysiology: epilepsy and inflammation in the brain. Epilepsy Curr. 14, 3-7
92. Rana, A., and Musto, A. E. (2018) The role of inflammation in the development of epilepsy. J. Neuroinflammation 15, 144
93. Kuhn, S. A., van Landeghem, F. K., Zacharias, R., Färber, K., Rappert, A., Pavlovic, S., Hoffmann, A., Nolte, C., and Kettenmann, H. (2004) Microglia express GABAB receptors to modulate interleukin release. Mol. Cell. Neurosci. 25, 312-322
94. Szepesi, Z., Manouchehrian, O., Bachiller, S., and Deierborg, T. (2018) Bidirectional microglia–neuron communication in health and disease. Front. Cell. Neurosci. 12, 323
95. Hsu, L.-J., Chiang, M.-F., Sze, C.-I., Su, W.-P., Yap, Y. V., Lee, I., Kuo, H.-L., and Chang, N.-S. (2016) HYAL-2–WWOX–SMAD4 Signaling in Cell Death and Anticancer Response. Frontiers in cell and developmental biology 4, 141
96. Hsu, L.-J., Schultz, L., Hong, Q., Van Moer, K., Heath, J., Li, M.-Y., Lai, F.-J., Lin, S.-R., Lee, M.-H., and Lo, C.-P. (2009) Transforming growth factor β1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1. J. Biol. Chem. 284, 16049-16059
97. Su, W.-P., Wang, W.-J., Sze, C.-I., and Chang, N.-S. (2016) Zfra induction of memory anticancer response via a novel immune cell. Oncoimmunology 5, e1213935
校內:2025-07-01公開