簡易檢索 / 詳目顯示

研究生: 楊開雲
Yang, Kai-Yun
論文名稱: 鈣鈦礦鈦酸鑭鋰與鋰金屬反應機制及反應抑制研究
Studies on Mechanism and Suppression of Interfacial Reaction Between Perovskite La2/3−xLi3xTiO3 and Metallic Lithium
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 129
中文關鍵詞: 鋰電池鋰金屬界面反應鈦酸鑭鋰固態電解質
外文關鍵詞: interfacial reaction, lithium battery, metallic lithium, lanthanum titanate, solid electrolyte
相關次數: 點閱:84下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全固態鋰電池的應用上,鋰離子導體是極關鍵的材料。然而,許多具有高離子導電率的結晶陶瓷體與鋰金屬陽極接觸時,會形成部分電子傳導特性,這使得具有高離子導電率的結晶陶瓷體無法作為全固態鋰電池之固態電解質。到目前為止只有極少的研究探討鋰金屬與離子導體間的界面反應,也僅用肉眼觀察試片變色的現象來判斷試片的反應,或藉著離子導體電性轉換後的結果推斷反應特性。本研究的目的即在於探討上述的反應機制與尋求可能的反應抑制方法,以進一步設計高穩定性的鋰離子導體。
    本研究使用具鈣鈦礦(ABO3)結構的鈦酸鑭鋰氧化物(La2/3–xLi3xTiO3)做為模型材料進行界面反應。原因是此氧化物具有高達10–3 S cm–1的離子導電率,但卻無法作為固態鋰電池之電解質,且其晶體結構與離子傳導機制已較具定論。研究中發現當組成La0.56Li0.33TiO3試片與鋰金屬反應接觸24小時之後,X光光電子能譜儀分析結果指出位於B位置的12%的四價Ti4+離子被轉變成三價Ti3+離子;此價態的轉變受限於鈦酸鑭鋰的B位置空間大小(基質晶體結構剛性)。離子二次質譜儀分析結果顯示在靠近反應界面有局部電場存在,而且也顯示本研究所使用的同位素6Li追蹤劑是透過這個電場效應嵌入樣品中。因此,在室溫下,金屬活化的界面反應機制為Ti4+過渡金屬離子還原及局部電場引導的鋰離子嵌入試片行為有關。再者,雖然這個鋰金屬活化的施體摻雜步驟將試片表面半導體化,但整體試片的離子導電特性卻持續轉變成混合離子/電子導電特性,因此在這個過程中必定牽涉一個與界面反應不直接相關的自發性電子移動行為,而此行為屬於隨鋰離子移動的電子躍遷。會發生上述的界面反應及傳導機制的改變,主要是因為La2/3–xLi3xTiO3結構中同時具有Ti4+過渡金屬離子及高濃度陽離子空缺,所以具有高濃度陽離子空缺的La2/3–xLi3xTiO3(3x<0.27)與鋰金屬反應後的16分鐘內,氧化物的電子導電率會提升到ca. 10–2 S cm–1;具有最低陽離子空缺的La0.50Li0.50TiO3與鋰金屬反應90分鐘後,其電子導電率僅提升到ca. 10–3 S cm–1,亦即此組成會有較高的鋰金屬反應抑制性。此外,本研究取代La0.50 Li0.50TiO3的Ti4+過渡金屬離子進一步穩定此氧化物的化學及導電傳導性質。本研究發現鈣鈦礦結構的LaAlO3可以融入La0.50Li0.50TiO3而形成單一La0.50+0.50xLi0.50–0.50xTi1–xAlxO3固溶體,指出Al3+離子能夠完全地取代Ti4+離子以穩定離子導體的性質。然而僅有LaAlO3固溶量為0–40 mol%的試片具有鋰離子傳導特性。試片與鋰金屬反應的導電率轉變的過程顯示隨著LaAlO3固溶量的增加,電子導電率由1.23×10–2 S cm–1下降到4.33×10–4 S cm–1,表示試片的電子濃度隨著固溶量增加而下降。因此,Al3+離子取代Ti4+離子能夠抑制La0.50Li0.50TiO3與鋰金屬的界面反應。

    Li+ conductors are key materials for technological applications as all- solid-state lithium batteries. Unfortunately, many crystalline phases having high Li+ conductivity are unstable in the presence of a metallic lithium anode. Although interfacial reactions between such conductors and the lithium anode are always inferred, very little effort has been devoted to studying this interfacial instability, which is usually examined by observing the coloration of sample with the naked eye. The scope of our study is, therefore, focused on the detailed reaction mechanism and its suppression.
    Among the various ceramic Li+ conductors, we employed a perovskite-type La2/3–xLi3xTiO3 as a model material for our fundamental study into the interfacial instability. This selection stems from the availability of the crystal structure and the easily comprehensible ion-transport mechanism. In this study, we found that when this La0.56Li0.33TiO3 sample and lithium were placed in contact at room temperature for 24 h, the results of X-ray photoelectron spectrometry (XPS) indicate that 12% of the tetravalent Ti4+ ions were converted into trivalent Ti3+ ions and the valence conversion and degree of conversion were limited by the structural rigidity of the host crystal. The secondary ion mass spectrometry (SIMS) analyses suggests the existence of a local electric field near the contact surface and indicates that the 6Li+ isotope ions were inserted into the specimen through the effect of this field. The mechanism of the lithium-activated RT interfacial reaction is associated with the reduction of Ti4+ transition metal ions from tetravalent to trivalent states, which resulted in the increase of electronic conductivity, and the local-electric-field-induced Li+ insertion into La3+/Li+-site vacancies of La0.56Li0.33TiO3. Moreover, although this metallic-lithium- activated donor doping process semiconductorized the sample on its surface, the ionic conduction of bulk sample was altered to mixed ionic/electronic conduction, which includes a spontaneous electronic transition without directly depending on the interfacial instability. Through our identification, this transition is the lithium-ion- motion dependent electron hopping process. As a result, it was roughly found that the phenomena mentioned above were caused by the presence of Ti4+–transition metal ions and the highly vacant structure in La2/3–xLi3xTiO3 system. Thus, La0.50Li0.50TiO3 has higher reaction inhibition against metallic lithium, and we also found that the perovskite-type LaAlO3 can be incorporated into La0.50Li0.50TiO3 to form a xLaAlO3–(1–x)La0.50Li0.50TiO3 solid solution (0.0 ≤ x ≤ 1.0; i.e., La0.50+0.50xLi0.50–0.50x - Ti1–xAlxO3), indicating that the Al3+ ions can be completely substituted for the Ti4+ ions. However, the samples with 0–40 mol % LaAlO3 have the Li+ ion conduction properties to be used as solid electrolytes of electrochemical devices. After measuring its electrical transition by using metallic lithium electrodes and digital multimeter, the altered process indicate that the sample’s electron concentration decreased with the incorporated amount of LaAlO3, in accordance with the decrease in the resulting electronic conductivity form 1.23× 10–2 S cm–1 to 4.33×10–4 S cm–1. Consequently, Al3+ ions substituted for the Ti4+ ions can assist La0.50Li0.50TiO3 to suppress the interfacial reaction between solid electrolyte and metallic lithium.

    中文摘要…………………………………………………………………I 英文摘要……………………………………………………………….II 致謝…………………………………………………………………… IV 總目錄………………………………………………………………… V 圖目錄…………………………………………………………………IX 表目錄………………………………………………………………..XIV 英漢名詞對照表…………………………………………………….. XV 第一章 緒論…………………………………………………………1 1-1 能源工業現況述……………………………………………1 1-2 全固態無機化合物鋰離子電池之潛力……………………1 1-3 動機及目的…………………………………………………2 第二章 理論基礎與文獻回顧………………………………………5 2-1 全固態鋰電池原理…………………………………………5 2-2 結晶氧化物固態電解質基本特性……………………… 10 2-2-1 具高離子導電率的陶瓷體所具備的結構特性……………10 2-2-2 滲透理論(Percolation theory)…………………………11 2-2-3 電解質的其他必需特性……………………………………15 2-3 離子傳導導電率定義及相關理論……………………….15 2-3-1 離子導電度—歐姆定律……………………………………15 2-3-2 離子移動活化能理論………………………………………16 2-4 穩定於室溫鋰金屬環境的一元及二元相系統氧化物… 18 2-4-1 鋰金屬基本物理化學性質…………………………………18 2-4-2 穩定的一元相及二元(Li2O–MxO)相系統氧化物……….18 2-5 鈣鈦礦結構(Perovskite)與傳統結晶化學理論……….21 2-5-1 鈣鈦礦結構………………………………………………. 21 2-5-2 穩定結構評估—容忍因子(Tolerance factor)…………22 2-6 鈣鈦礦鈦酸鑭鋰氧化物(La2/3–xLi3xTiO3)………….22 2-6-1 鈦酸鑭鋰氧化物之缺陷結構………………………………22 2-6-2 鈦酸鑭鋰氧化物化學組成與離子導電率的關係…………24 2-6-3 A位置離子的取代對離子傳導活化能所造成的效應…….27 2-6-4 鋰金屬與鈦酸鑭鋰氧化物之化學不穩定性相關研究……29 2-7 鈣鈦礦結構鋁酸鑭氧化物(LaAlO3)…………………….29 2-7-1 鋁酸鑭氧化物之結構………………………………………29 2-7-2 鋁酸鑭氧化物化學組成及離子導電率的關係……………31 2-8 X光光電子能譜儀(XPS)分析原理……………………….31 2-9 二次離子質譜儀(SIMS)分析原理……………………… 32 2-10 交流阻抗分析原理—離子傳導量測…………………… 32 第三章 實驗方法與步驟………………………………………… 36 3-1 La0.56Li0.33TiO3/Metallic-lithium界面反應………36 3-1-1 實驗流程……………………………………………………36 3-1-2 La0.56Li0.33TiO3合成及燒結步驟…………………… 36 3-1-3 La0.56Li0.33TiO3固態離子導體試片與鋰金屬反應步驟37 3-1-4 分析方法及性質量測……………………………………… 37 3-1-4-1 結構分析—X光繞射分析(X-ray diffractometer; XRD)…………………………………………………………………………37 3-1-4-2 掃描式電子顯微鏡(Scanning electron microscope;SEM)觀察……………………………………………………………………37 3-1-4-3 X光光電子能譜儀(X-ray photoelectron spectrometer; XPS)析…………………………………………………………………37 3-1-4-4 二次離子質譜儀(Secondary ion mass spectrometer; SIMS)分析…………………………………………………………… 38 3-1-4-5 導電性質測試—交流阻抗分析及直流數位電表量測……38 3-2 化學鋰化La2/3–xLi3xTiO3離子導體導電行為轉換研究………………………………………………………………………38 3-2-1 實驗流程………………………………………………………………………38 3-2-2 La2/3–xLi3xTiO3合成及燒結步驟…………………… 39 3-2-3 La2/3–xLi3xTiO3導電行為轉換的測試—導電率動態變化量測……………………………………………………………………39 3-2-4 La2/3–xLi3xTiO3與鋰金屬反應前後的離子與電子導電率量測………………………………………………………………………41 3-3 LaAlO3的添加對La0.50Li0.50TiO3性質與對鋰金屬反應抑制性之影響………………………………………………………………………41 3-3-1 實驗流程…………………………………………………41 3-3-2 LaAlO3–La0.50Li0.50TiO3固溶體合成及燒結步驟 41 3-3-3 性質量測……………………………………………………42 3-3-3-1 結構分析—X光繞射分析………………………………… 42 3-3-3-2 導電性質測試—交流阻抗分析……………………………42 3-3-3-3 LaAlO3–La0.50Li0.50TiO3固溶體與鋰金屬之間的穩定性測試……………………………………………………………………42 第四章 La0.56Li0.33TiO3與鋰金屬間之界面反應研究……… 43 4-1 前言……………………………………………………… 43 4-2 反應前後的La0.56Li0.33TiO3結晶相分析…………… 43 4-3 反應前後La、Li、Ti元素的XPS分析………………… 47 4-3-1 La與Li的XPS分析結果…………………………………… 47 4-3-2 Ti的XPS分析結果………………………………………… 47 4-4 四價鈦轉換為三價後的電荷補償—SIMS分析………… 51 4-5 La0.56Li0.33TiO3導電行為的轉變…………………… 55 4-5-1 界面反應對試片鋰離子傳導特性的影響—交流阻抗分析………………………………………………………………………55 4-5-1-1 界面反應對試片晶粒導電率的影響…………………… 59 4-5-1-2 界面反應對晶界導電率的影響………………………… 60 4-5-2 界面反應對試片電子傳導特性的影響……………… 62 4-6 La0.56Li0.33TiO3與鋰金屬的界面反應機制………… 62 4-7 小結……………………………………………………… 65 第五章 化學鋰化La2/3–xLi3xTiO3離子導體導電行為轉換研究………………………………………………………………………67 5-1 前言……………………………………………………… 67 5-2 化學鋰化La2/3–xLi3xTiO3的導電行為轉換的物理意涵…………………………………………………………………… 67 5-3 簡單現象模型的建立…………………………………… 70 5-4 定義化學鋰化後的試片導電率變化行為……………… 74 5-5 鋰化La2/3–xLi3xTiO3的導電行為轉換現象………… 81 5-5-1 La2/3–xLi3xTiO3的反應前後總導電率變化……………81 5-5-2 La2/3–xLi3xTiO3電傳導機制的轉換……………………84 5-6 小結……………………………………………………… 88 第六章 LaAlO3的添加對La0.50Li0.50TiO3性質與對鋰金屬反應抑制性之影響………………………………………………………… 90 6-1 前言……………………………………………………… 90 6-2 LaAlO3–La0.50Li0.50TiO3固溶體性質……………… 91 6-2-1 LaAlO3–La0.50Li0.50TiO3固溶體相發展………………91 6-2-1-1 固溶體的存在範圍…………………………………………91 6-2-1-2 xLaAlO3–(1−x)La0.50Li0.50TiO3固溶體晶體結構對稱性之改變……………………………………………………………… 92 6-2-1-3固溶體晶體結構資訊整理……………………………… 103 6-2-2 LaAlO3–La0.50Li0.50TiO3固溶體之導電性質……… 103 6-2-2-1 固溶體的離子傳導活化能……………………………… 106 6-2-2-2 固溶體的常溫離子導電率……………………………… 112 6-3 LaAlO3–La0.50Li0.50TiO3固溶體與鋰金屬之反應…114 6-4 小結…………………………………………………… 116 第七章 總結論……………………………………………………118 參考文獻………………………………………………………………120 自述……………………………………………………………………127

    [1] D. L. Greene, J. L. Hopson, J. Li, “Have we run out of oil yet? Oil peaking analysis from an optimist’s perspective” Energy Policy 34 (2006) 515.
    [2] K. Takei, K. ishihara, K. Kumai, T. Iwahori, K. Miyake, T. Nakatsu, N. Tereda, N. Arai, “Performance of large-scale secondary lithium batteries for electric vehicles and home-use load-leveling systems” J. Power Sources 119–121 (2003) 887.
    [3] K. Adachi, H. Tajima, T. Hashimoto, K. Kobayashi, “Development of 16 kWh power storage system applying Li-ion batteries” J. Power Sources 119–121 (2003) 897.
    [4] K. Tamura, T. Horiba, T. Iwahori, “Large-scale development of lithium batteries for electric vehicles and electric power storage applications” J. Power Sources 81–82 (1999) 156.
    [5] R. Spotniz, Advances in Lithium-Ion Batteries, Kluwer Academic/Plenum Publishers, New York, (2003) p. 433.
    [6] G. A. Nazri, G. Pistoia, Lithium Batteries Science and Technology, Kluwer Academic Publishers, New York, (2004).
    [7] W. V. Schalkwijk, B. Scrosati, Advances in Lithium-Ion Batteries, Kluwer Academic/Plenum Publishers, New York, (2002).
    [8] J. –M. Tarascon, M. Armand, “Issues and challenges facing rechargeable lithium batteries” Nature 414 (2001) 359.
    [9] G. T. K. Feyand, T. H. Kao, “Lithium organic electrolyte batteries”, Chemistry, The Chinese Chemical Society, 47 (1989) 47.
    [10] J.-I Yamaki, S. –I. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, M. Arakawa, “Consideration of the morphology of electrochemically deposited lithium in an organic electrolyte” J. Power Sources 74 (1998) 219.
    [11] 楊家諭,鄭賢豪,“二次鋰離子電池的安全性”工業材料 117 (1996) 71.
    [12] H.V. Venkatasetty, Lithium Battery Technology, Wiley Publishers, New York, (1984) Chaper 1.
    [13] S. Kondo, M. Wakihara, O. Yamamoto, Lithium Ion Batteries, Kodansha Publishers, Tokyo, (1998) Chapter 9.
    [14] P. Fragnaud, D. M. Schleich, “Thin film components for solid state lithium batteries” Sens. Actuators A 51 (1995) 21.
    [15] P. Birke, W. F. Chu, W. Weppner, “Materials for lithium thin-film batteries for application in silicon technology” Solid State Ionics 93 (1997) 1.
    [16] P. Birke, W. Weppner, “Electrochemical analysis of thin film electrolytes and electrodes for application in rechargeable all solid state lithium microbatteries” Electrochim. Acta 42 (1997) 3375.
    [17] C. H. Chen, K. Amine, “Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate” Solid State Ionics 144 (2001) 51.
    [18] M. Murayama, N. Sonoyama, A. Yamada, R. Kanno, “Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system” Solid State Ionics 170 (2004) 173.
    [19] R. G. Kelly, P. J. Moran, “The rate limiting mechanism in Li/I2 (P2VP) batteries” J. Electrochem. Soc. 134 (1987) 25.
    [20] T. R. Jow, C. C. Liang, “Interface between solid electrode and solid electrolyte - A study of the Li/LiI/Al2O3/solid-electrolyte system” J. Electrochem. Soc. 130 (1983) 737.
    [21] A. R. West, Basic Solid State Chemistry, Wiley Publishers, New York, (1997) p. 325.
    [22] J. Wahl, “Ionic conductivity of lithium nitride doped with hydrogen” Solid State Commun. 29 (1979) 485.
    [23] A. G. Belous, G. N. Novitskaya, S. V. Polyanetskaya, Yu. I. Gornikov, “Study of complex oxides with the composition La2/3–xLi3xTiO3” Inorg. Mater. 23 (1987) 412.
    [24] J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, J. D. Robertson, “Electrical properties of amorphous lithium electrolyte thin films” Solid State Ionics 53–56 (1992) 647.
    [25] J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, J. D. Robertson, “Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries” J. Power Sources 43 (1993) 103.
    [26] J. B. Bates, G. R. Gruzalski, N. J. Dudney, C. F. Luck, Xiaohua Yu, “Rechargeable thin-film lithium batteries” Solid State Ionics 70–71 (1994) 619.
    [27] J. B. Bates, N. J. Dudney, D. C. Lubben, G. R. Gruzalski, B. S. Kwak, Xiaohua Yu, R. A. Zuhr, “Thin-film rechargeable lithium batteries” J. Power Sources 54 (1995) 58.
    [28] J. B. Bates, D. C. Lubben, N. J. Dudney, G. R. Gruzalski, F. X. Hart, “5 volt plateau in LiMn2O4 thin films” J. Electrochem. Soc. 142 (1995) L149.
    [29] Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, “High ionic conductivity in lithium lanthanum titanate” Solid State Commun. 86 (1993) 689.
    [30] H. Kawai, J. Kuwano, “Lithium ion conductivity of A-site deficient perovskite solid solution La0.67–xLi3xTiO3” J. Electrochem. Soc. L78 (1994) 141.
    [31] Y. Inaguma, L. Chen, M. Itoh, T. Nakamura, “Candidate compounds with perovskite structure for high lithium ionic conductivity” Solid State Ionics 70/71 (1994) 196.
    [32] Y. Inaguma and M. Itoh, “Influences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides” Solid State Ionics 86–88 (1996) 257.
    [33] M. Nakayama, T. Usui, Y. Uchimoto, M. Wakihara, M. Yamamoto, “Changes in Electronic Structure upon Lithium Insertion into the A-Site Deficient Perovskite Type Oxides (Li,La)TiO3” J. Phys. Chem. B 109 (2005) 4135.
    [34] D. H. Doughty, “Material issues in lithium ion rechargeable battery technology” SAMPLE J. 32 (1996) 75.
    [35] J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, C. D. Evans, “Thin-film lithium and lithium-ion batteries” Solid State Ionics 135 (2000) 33.
    [36] T. J. Boyle, D. Ingersoll, R. T. Cygan, M. A. Rodriguez, K. Rahimian, J. A. Voight, “All-ceramic thin film battery” SANDIA REPORT (SAND2002-3615) (2002) p. 8.
    [37] 楊家諭,“高分子電池未來發展趨勢”工業材料 144 (1998) 163.
    [38] 王常珍, 固體電解質和化學傳感器, 冶金工業出版社, 北京, (2000) p. 73.
    [39] J. HLADIK, Physics of Electrolytes Vol.1 Transport Processes in Solid Electrolytes and in Electrodes, Academic press, New York, (1972) Chap. 2.
    [40] M. Barsoum, Fundamentals of Ceramics, McGraw-Hill, New York, (1997) pp. 215–216.
    [41] A. R. West, Solid State Chemistry and Its Applications, Wiley Publishers, New York, (1992) p. 453.
    [42] 王常珍, 固體電解質和化學傳感器, 冶金工業出版社, 北京, (2000) p. 25.
    [43] M. Barsoum, Fundamentals of Ceramics, McGraw-Hill, New York, (1997) p. 213.
    [44] J. HLADIK, Physics of Electrolytes Vol.1 Transport Processes in Solid Electrolytes and in Electrodes, Academic press, New York, (1972) p. 300.
    [45] A. R. West, Basic Solid State Chemistry, Wiley Publishers, New York, (1997) p. 323.
    [46] D. Stauffer, A. Aharony, Introduction to Percolation Theory, Taylor&Francis Publishers, London, (1994).
    [47] M. Sahimi, Applications of Percolation Theory, Taylor&Francis Publishers, London, (1994).
    [48] F. C. Walsh, “Electrolytic conductivity and its measurement” Trans. Inst. Met. Finish. 70 (1992) 45.
    [49] W. H. Flygare, R. A. Huggins, “Theory of ionic transport in crystallographic tunnels” J. Phys. Chem. Solids 34 (1973) 1199.
    [50] J. HLADIK, Physics of Electrolytes Vol.1 Transport Processes in Solid Electrolytes and in Electrodes, Academic press, New York, (1972) p. 169.
    [51] R. D. Armstrong, R. S. Bulmer, T. Dickinson, “Some factors responsible for high ionic conductivity in simple solid compounds” J. Solid State Chem. 8 (1973) 219.
    [52] J. Emsley, The Elements, Oxford University press, New York, (1989) pp. 104–105.
    [53] D. W. Jeppson, J. L. Ballif, W. W. Yuan, B. E. Chou, Lithium Literature Review: Lithium’s Properties and Interactions, Hanford Engineering Development Laboratory (1978).
    [54] E. E. Hellstrom, and W. Van Gool, “Constraints for the selection of lithium solid electrolytes” Revue de Chimie minérale 17 (1980) 263.
    [55] H. V. Venkatasetty, Lithium Battery Technology, Academic press, Wiley Publishers, New York, (1984) pp. 208–209.
    [56] R. N. Singh, “Compatibility of ceramics with liquid Na and Li” J. Am. Ceram. Soc. 59 (1976) 112.
    [57] V. M. Goldschmidt, Skrifter Norske Videnskaps-Akad. Oslo, I. Mat.-Nat. Kl. (1926) 8.
    [58] O. Muller, R. Roy, The Major Ternary Structural Families, Springer-Verlag press, New York, (1974) p. 221.
    [59] J. Ibarra, A. Várez, C. León, J. Santamaría, L. M. Torres-Martinez, J. Sanz, “Influence of composition on the structure and conductivity of the fast ionic conductors La2/3–xLi3xTiO3 (0.03 ≤ x ≤ 0.167)” Solid State Ionics 134 (2000) 219.
    [60] Y. Harada, T. Ishigaki, H. Kawai, J. Kuwano, “Lithium ion conductivity of polycrystalline perovskite La2/3–xLi3xTiO3 with ordered and disordered arrangements of the A-site ions” Solid State Ionics 108 (1998) 407.
    [61] J. Emery, J. Y. Buzare, O. Bohnke, J. L. Fourquet, “Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes” Solid State Ionics 99 (1997) 41.
    [62] M. Itoh, Y. Inaguma, W. –H. Jung, L. Chen, T. Nakamura, “High lithium ion conductivity in the perovskite-type compounds Ln1/2Li1/2TiO3 (Ln = La, Pr, Nd, Sm)” Solid State Ionics 70/71 (1994) 203.
    [63] Y. Inaguma, J. Yu, Y. –J Shan, M. Itoh, T. Nakamura, “The effect of the hydrostatic pressure on the ionic conductivity in a perovskite lanthanum lithium titanate” J. electrochem. Soc. 142 (1995) L8.
    [64] Y. Inaguma, Y. Matsui, J. Yu, Y. –J Shan, T. Nakamura, M. Itoh, “Effect of substitution and pressure on lithium ion conductvivity in perovskites Ln1/2Li1/2TiO3 (Ln = La, Pr, Nd, and Sm)” J. Phys. Chem Solids 58 (1997) 843.
    [65] S. Yue Jin, C. Liquan, Y. Inaguma, M. Itoh, T. Nakamura, “Oxide cathode with perovskite structure for rechargeable lithium batteries” J. Power Sources 54 (1995) 397.
    [66] O. Bohnke, C. Bohnke, J. L. Fourquet, “Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate” Solid State Ionics 91 (1996) 21.
    [67] M. Klingler, W. F. Chu, W. Weppner, “Coulometric titration of substituted Li3xLa(2–x)/3TiO3” Ionics 3 (1997) 289.
    [68] H. –T. Chung, J. –G. Kim, H. –G. Kim, “Dependence of the lithium ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1–xMxO3 (M=Sn,Zr,Mn,Ge)” Solid State Ionics 107 (1998) 153.
    [69] O. Bohnke, J. L. Fourquet, J. Y. Buzaré, P. Florian, D. Massiot, “Polaronic effects on lithium motion in intercalated perovskite lithium lanthanum titanate observed by 7Li NMR and impedance spetroscopy” J. Phys.: Condens. Matrer 11 (1999) 10401.
    [70] A. Morata-Orrantia, S. Garcia-Martin, E. Moran, M. A. Alario-Franco, “A new La2/3LixTi1–xAlxO3 solid solution: structure, microstructure, and Li+ conductivity” Chem. Mater. 14 (2002) 2871.
    [71] G. Zhuang, K. Wang, P. N. Jr. Ross, “XPS characterization of the reactions of Li with tetrahydrofuran and propylene carbonate” Surf. Sci. 387 (1997) 199.
    [72] C. H. Chen, K. Amine, “Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate” Solid State Ionics 144 (2001) 51.
    [73] A. J. Jacobson, B. C. Tofield, B. E. F. Fender, “The structures of BaCeO3, BaPrO3 and BaTbO3 by neutron diffraction: lattice parameter relations and ionic radii in O-perovskites” Acta Cryst. B28 (1972) 956.
    [74] J. A. Kilner, P. Barrow, R. J. Brook, M. J. Norgett, “Electrolyte for high temperature Fuel Cell: Experimental and theoretical studies of the perovskite LaAlO3” J. Power Sources 3 (1978) 67.
    [75] J. Mizusaki, I. Yasuda, J. I. Shimoyama, S. Yamauchi, K. Fueki, “Electrical conductivity, defect equilibrium and oxygen vacancy diffusion coefficient of La1–xCaxAlO3 single crystals” J. Electrochem. Soc. 140 (1993) 467.
    [76] J. F. Watts, J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, Wiley press, New York, (2003).
    [77] 伍秀菁, 汪若文, 林美吟, Introduction to Instrumentation: Surface Analysis Instrument, 行政院國家科學委員會精密儀器發展中心出版, 新竹, (1998) pp. 5–6.
    [78] T. L. Barr, Modern ESCA: The Principles and Practice of X-Ray Photoelectron Spectroscopy, CRC press, London, (1994).
    [79] 伍秀菁, 汪若文, 林美吟, Introduction to Instrumentation: Surface Analysis Instrument, 行政院國家科學委員會精密儀器發展中心出版, 新竹, (1998) pp. 16–19.
    [80] 王常珍, 固體電解質和化學傳感器, 冶金工業出版社, 北京, (2000) pp. 33–38.
    [81] 史美倫, 交流阻抗原理及應用, 國防工業出版社, 北京, (2001).
    [82] J. R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems; John Wiley and Sons press, New York, 2005.
    [83] J. E. Bauerle, “Study of solid electrolyte polarization by a. complex admittance method” J. Phys. Chem. Solids 30 (1969) 265.
    [84] A. D. Robertson, S. Garcia Martin, A. Coats, A. R. West, “Phase diagrams and crystal chemistry in the Li+ ion conducting perovskites, Li0.5–3xRE0.5+xTiO3: RE = La, Nd” J. Mater. Chem. 5 (1995) 1405.
    [85] Y. Hirakoso, Y. Harada, J. Kuwano, Y. Saito, Y. Ishikawa, T. Eguchi, “Lithium ion conduction in the ordered and disordered phases of A-site deficient perovskite La0.56Li0.33TiO3” Key Eng. Mater. 169–170 (1999) 209.
    [86] J. L. Fourquet, H. Duroy, M. P. Crosnier-Lopez, “Structural and microstructural studies of the series La2/3–xLi3xTiO3” J. Solid State Chem. 127 (1996) 283.
    [87] N. S. P. Bhuvanesh, O. Bohnké, H. Duroy, M. P. Crosnier-Lopez, J. Emery, J. L. Fourquet, “Topotactic H+/Li+ ion exchange on La2/3−xLi3xTiO3: new metastable perovskite phases La2/3−xTiO3−3x(OH)3x and La2/3−xTiO3−3x/2 obtained by further dehydration” Mater. Res. Bull. 33 (1998) 1681.
    [88] M. Abe, K. Uchino, “X-ray study of the deficient perovskite La2/3TiO3” Mater. Res. Bull. 9 (1974) 147.
    [89] Y. Inaguma, J. H. Sohn, I. S. Kim, M. Itoh, T. Nakamura, “Quantum paraelectricity in a perovskite La1/2Na1/2TiO3” J. Phys. Soc. Jpn. 61 (1992) 3831.
    [90] M. T. Anderson, K. B. Greenwood, G. A. Taylor, K. R. Poeppelmeier, “B-cation arrangements in double perovskites” Prog. Solid State Chem. 22 (1993) 197.
    [91] J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics press, Eden Prairie, 1995.
    [92] J. P. Miao, L. P. Li, H. J. Liu, D. P. Xu, Z. Lu, Y. B. Song, W. H. Su, Y. G. Zheng, “Structure Characteristics and valence state study for La1–xNaxTiO3 synthesised under high-pressure and high-temperature conditions” Mater. Lett. 42 (2000) 1.
    [93] D. L. Lam, B. W. Veal, D. E. Ellis “Electronic structure of lanthanum perovskites with 3d transition elements” Phys. Rev. B 22 (1980) 5730.
    [94] G. K. Wertheim, R. L. Cohen, A. Rosencwaig, H. J. Guggenheim, Electron Spectroscopy; North-Holland press, Amsterdam, 1972.
    [95] C. N. R. Rao, D. D. Sarma, “Study of electron states of solids by techniques of electron spectroscopy” J. Solid State Chem. 45 (1982) 14.
    [96] F. Guillemot, M. C. Porté, C. Labrugère, Ch. Baquey, “Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: interest for titanium biomedical applications” J. Colloid Interface Sci. 255 (2002) 75.
    [97] L. Q. Wang, D. R. Baer, M. H. Engelhard, “Creation of variable concentrations of defects on TiO2(110) using low-density electron beams” Surf. Sci. 320 (1994) 295.
    [98] S. Stramare, V. Thangadurai, W. Weppner, “Lithium lanthanum titanates: a review” Chem. Mater. 15 (2003) 3974.
    [99] D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed., CRC Press, New York, 2004.
    [100] P. A. Jonsson, Deconvolution of Images and Spectra, Academic press, New York, 1997.
    [101] D. C. Sinclair, J. M. S. Skakle, F. D. Morrison, R. I. Smith, T. P. Beales, “Structure and electrical properties of oxygen-deficient hexagonal BaTiO3” J. Mater. Chem. 9 (1999) 1327.
    [102] C. W. Ban, G. M. Choi, “The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates” Solid State Ionics 140 (2001) 285.
    [103] S. García-Martín, A. Morata-Orrantia, M. Á. Alario-Franco, “Influence of the crystal microstructure on the dielectric response of the La0.67Li0.2Ti0.8Al0.2O3” J. Appl. Phys 100 (2006) 054101.
    [104] R. D. Cannon, Electron Transfer Reactions; Butterworths: London, 1980.
    [105] G. C. Allen, J. M. Dyke, “An investigation of the optical spectrum of lithium doped nickel oxide” Chem. Phys. Lett. 37 (1976) 391.
    [106] A. J. Bosman, C. J. Crevecoeur, “Dipole relaxation losses in CoO doped with Li or Na” J. Phys. Chem. Solids 29 (1968) 109.
    [107] B. Reuter, E. Riedel, G. Z. Buxbaum, “Über Oxidsysteme mit Übergangsmetall- ionen in verschiedenen Oxydationsstufen. VII. Das System Mn(NixV2–x)O4” Z. Anorg. Allg. Chem. 367 (1969) 113.
    [108] V. Thangadurai, W. Weppner, “Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet-like oxide for fast lithium ion conduction” Adv. Funct. Mater. 15 (2005) 107.
    [109] P. Birke, S. Schamer, R. A. Huggins, W. Weppner, “Electrolytic stability limit and rapid lithium insertion in the fast-ion-conducting Li0.29La0.57TiO3 perovskite-type compound” J. Electrochem. Soc. 144 (1997) L167.
    [110] E. Iguchi, N. Kubota, T. Nakamori, N. Yamamoto, K. J. Lee, “Polaronic conduction in n-type BaTiO3 doped with La2O3 or Gd2O3” Phys. Rev. 43 (1991) 8646.
    [111] F. Lichtenberg, T. Williams, D. Widmer, J. G. Bednorz, “Electric and magnetic properties of the first layered conducting titanium and niobium oxides” Z. Phys. B-Condensed Matter 84 (1991) 369.
    [112] I. Yamada, Y. Iriyama, T. Abe, Z. Ogumi, “Lithium-ion transfer between LixCoO2 and polymer gel electrolytes” Science and Technology of Advanced Materials 7 (2006) 519.
    [113] M. –S. Wu, P. –C. Julia Chiang, J. –C. Lin, “Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements” J. Electrochem. Soc. 152 (2005) A47.
    [114] H. Aono, E. Sugimoto, Y. Sakaoka, N. Imanaka, G. Adach, “Ionic conductivity of solid electrolytes based on lithium titanium phosphate” J. Electrochem. Soc. 137 (1990) 1023.
    [115] H. Aono, E. Sugimoto, Y. Sakaoka, N. Imanaka, G. Adach, “Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3)” Solid State Ionics 47 (1991) 257.
    [116] H. Aono, E. Sugimoto, Y. Sakaoka, N. Imanaka, G. Adach, “Electrical properties of ceramic electrolytes for LiMxTi2–x(PO4)3 + yLi2O, M = Ge, Sn, Hf, and Zr systems” J. Electrochem. Soc. 140 (1993) 1827.
    [117] J. G. kim, H. G. Kim, H. T. Chung, “Microstructure-ionic conductivity relationships in perovskite lithium lanthanum titanate” J. Mater. Sci. Lett. 18 (1999) 493.
    [118] 曾怡仁, 方冠榮, “BaZrO3添加對La0.57Li0.3TiO3晶體結構及導電性質之影響” 國立成功大學碩士論文,台灣 台南, 2003.
    [119] Y. Harada, Y. Hiracoso, H. Kawai, J. Kuwano, “Order–disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67−xLi3xTiO3 (x=0.11)” Solid State Ionics 121 (1999) 245.
    [120] A. Várez, J. Ibarra, A. Rivera, C. León, J. Santamaría, M. A. Laguna, M. L. Sanjuán, J. Sanz, “Influence of Quenching Treatments on Structure and Conductivity of the Li3xLa2/3-xTiO3 Series” Chem. Mater. 15 (2003) 225.
    [121] C. Boundias, D. Monceau, CaRIne Crystallography, Senlis, 1998.
    [122] A. Rivera, C. León, J. Santamaría, A. Várez, M. A. Paris, J. Sanz, “Li3xLa2/3−xTiO3 fast ionic conductors.: Correlation between lithium mobility and structure” J. Non-Cryst Solids 307–310 (2002) 992.
    [123] S. Škapin, D. Kolar, D. Suvorov, “X-ray diffraction and microstructural investigation of the Al2O3–La2O3–TiO2 system” J. Am. Ceram. Soc. 76[9] (1993) 2359.
    [124] H. Yoshioka, “Unusual dielectric behavior of La–Ti–Al–O ceramics with perovskite structure” Jpn. J. Appl. Phys. 33 (1994) L945.
    [125] J. H. Moon, H. S. Park, K. T. Lee, J. H. Choi, D. H. Teo, S. J. Yoon, H. J. Kim, “Microwave dielectric properties of the (1–x)La2/3TiO3–xLaAlO3 system” Jpn. J. Appl. Phys. 36 (1997) 6814.
    [126] H. J. Lee, H. M. Park, Y. K. Cho, S. Nahm, “Microstructure characterization of the (1–x)La2/3TiO3-xLaAlO3 system” J. Am. Ceram. Soc. 86[8] (2003) 1395.
    [127] A. J. Jacobson, B. C. Tofield, B. E. F. Fender, “The Structures of BaCeO3, BaPrO3 and BaTbO3 by neutron diffraction: Lattice parameter relations and ionic radii in O-perovskites” Acta Cryst. B28 (1972) 956.
    [128] T. J. B. Holland and S. A. T. Redfern, “Unit cell parameter refinement: changing the dependent variable and use of regression diagnostics” Mineralogical Magazine 61 (1997) 65.
    [129(a)] M. Nakayama, H. Ikuta, Y. Uchimoto, M. Wakihara, Y. Terada, “Relationship between the Li ionic conduction and the local structures in B-site substituted perovskite compounds, (Li0.1La0.3)1+xMxNb1–xO3 (M=Zr, Ti; x=0, 0.05)” Appl. Phys. Lett. 81 (2002) 2977.
    [129(b)] M. Nakayama, H. Ikuta, Y. Uchimoto, M. Wakihara, “Ionic conduction of lithium in B-site substituted perovskite compounds, (Li0.1La0.3)yMxNb1–xO3 (M = Zr, Ti, Ta)” J. Mater. Chem. 12 (2002) 1500.
    [130] A. Rivera, C. Leon, J. Santamaria, A. Varez, O. V’yunov, A. G. Belous, J. A. Alonso, J. Sanz, “Percolation-limited ionic diffusion in Li0.5–xNaxLa0.5TiO3 perovskites (0 ≤ x ≤ 0.5)” Chem. Mater. 14 (2002) 5148.
    [131] Y. Inaguma, Y. Matsui, Y. J. Shan, M. Itoh, T. Nakamura, “Lithium ion conductivity in the perovskite-type LiTaO3–SrTiO3 solid solution” Solid State Ionics 79 (1995) 91.
    [132] O. Bohnke, C. Bohnke, J. Ould Sid’Ahmed, M. P. Crosnier-Lopez, h. Duroy, F. Le Berre, J. L. Fourquet, “Lithium ion conductivity in new perovskite oxides [AgyLi1–x]3xLa2/3–x1/3–2xTiO3 (x = 0.09 and 0 ≤ y ≤ 1)” Chem. Mater. 13 (2001) 1593.

    下載圖示 校內:2012-06-14公開
    校外:2017-06-14公開
    QR CODE