簡易檢索 / 詳目顯示

研究生: 劉哲瑋
Liu, Zhe-Wei
論文名稱: 具有非對齊入口流道與分合流道模組接頭的微混合器
Micromixers with non-aligned inlets and split-and-recombination module junctions
指導教授: 吳志陽
Wu, Chih-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 131
中文關鍵詞: 微混合器非對齊入口分合流道模組田口法粒子反向追跡
外文關鍵詞: micromixers, non-aligned inlets, split-and-recombination modules, Taguchi method, particle tracking
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討具有非對齊入口流道與分合流道模組接頭的微混合器,流體由非對齊入口進入主混合流道時形成渦流流動結構,而分合流道部分採用模組化設計,分合流道先分成兩個轉彎的流道,利用轉彎產生離心力,使流體產生拉伸折疊效應促進混合,再以非對齊T形接頭進行合流,期望多個分合流道模組情況下,使混合度大於0.9。本研究分合流道模組分別採用直角轉彎分合流道模組與非直角轉彎分合流道模組。影響後者的幾何參數甚多,我們利用田口法找出考慮之幾何參數的最佳組合,考慮之幾合參數包括分支流道分流角度、分支流道中匯流部份之外的分支流道中心線在轉彎前之長度、分支流道截面寬度、匯流部分的分支流道長度,並分析各雷諾數下的混合表現。本文考慮的對流擴散過程包括高培克萊特數的情形,若以網格法模擬會發生數值擴散,因此,本研究使用流體粒子反向追跡結合近似擴散模式進行數值模擬。為了驗證數值模擬的可信度,使用微影技術進行微混合器製作,在利用共軛焦顯微鏡觀察流體在流道中的混合狀況,並與數值模擬相互比較,發現兩者結果相當一致。本文研究的結果顯示,採用本文提出的非直角轉彎分合流道模組會有較低的壓降與更好的混合效率,且隨雷諾數增加,對流效應愈明顯,渦流強度及影響範圍增大,混合表現愈好。多模組設計中,隨分合流道模組數目增加,混合程度增加幅度會變小,且壓降會呈線性上升,在分合流道模組數為4時,採用具有非對齊入口流道與非直角轉彎分合流道模組的微混合器,當雷諾數為100時,其壓降仍在合理範圍內,而流道出口混合度可達到0.9以上。

    This study investigates micromixers with non-aligned inlets and split-and-recombination module junctions. The incoming fluid streams from non-aligned inlets flowing into the main mixing channel result in a swirl flow. Then, the main mixing channel and a series of spilt-and-recombination modules are connected to form the micromixer. When fluid streams go through bends, centrifugal force will be developed. Centrifugal force can stretch and distort the interface between different fluids. Similarly, the recombination of fluid streams at non-aligned junction induces swirl flow. Both centrifugal force and swirl flow enhance the mixing performance. In this study, the split-and-recombination modules adopt sub-channels with either right angle bends or non-right angle bends. The simulation results of the grid method have numerical diffusion under high Peclet number. Thus, the particle tracking method with an approximation diffusion model is applied to the present cases. We use the Taguchi method to select better geometric parameters for the modules with non-right angle bends. Finally, we fabricate the micromixer by micro-lithography process and use a confocal microscopy to acquire the image for the mixing and flow in the micromixer. Comparisons of the simulation results and the experiment acquire images shows qualitative agreement. The results of this study show that the micromixers which adopt sub-channels with non-right angle bends have lower pressure drop and better mixing performance. The degree of mixing reaches a value larger than 0.9 for a micromixer adopting four modules with non-right angle bends at Reynolds number equal to 100.

    摘要 i Extended Abstract ii 誌謝 ix 目錄 x 表目錄 xiii 圖目錄 xiv 符號表 xxi 第一章 緒論 1 1-1研究背景 1 1-2文獻回顧 1 1-3 研究動機 4 1-4 研究方法 5 1-5 本文架構 5 第二章 流道幾何形狀與數值模擬方法 6 2-1 微混合器之設計 6 2-1-1 微混合器之主混合流道最佳長度 6 2-1-2 非直角轉彎分支流道模組幾何參數與田口法 7 2-1-3 微混合器之分合流道模組最佳組數 9 2-2 基本假設與統御方程式 9 2-3 邊界條件 10 2-4 無因次化 11 2-5 網格法數值模擬 13 2-5-1 幾何形狀與網格建立 13 2-5-2 模擬運算 13 2-5-3 後處理 14 2-6 流體粒子反向追跡與近似擴散模式 14 2-7 混合指數 16 2-7-1 一般平均濃度與體濃度計算 16 2-7-2 混合度計算 17 第三章 微混合器製作與實驗觀察 18 3-1 微混合器之製作流程 18 3-1-1 光罩設計 18 3-1-2 母模製作 18 3-1-3 表面粗度儀量測流道高度與寬度 20 3-1-4 翻模製作微流道 20 3-1-5 微流道氧電漿貼合與管線黏合 21 3-2 實驗觀測 21 3-2-1 工作流體與微量式注射幫浦 21 3-2-1 實驗影像擷取 21 第四章 結果的驗證與討論 23 4-1 模擬方法之測試 23 4-1-1 網格法測試 23 4-1-2 流體粒子反向追跡與近似擴散模式解法之測試 24 4-1-3 網格法與流體粒子反向追跡與近似擴散模式解法之比較 24 4-2 不同混合度計算方法 25 4-3 主混合流道最佳長度 26 4-4 雷諾數對具有非對齊入口流道與直角轉彎分合流道模組接頭的微混合器之混合的影響 26 4-4-1 各種雷諾數下流體在主混合流道流動特徵與混合形態 26 4-4-2 各種雷諾數下直角轉彎分合流道中的流動特徵與濃度分佈 28 4-4-3 具有非對齊入口流道與直角轉彎的分合流道模組接頭的影響 29 4-5 具有非對齊入口流道與分合流道模組接頭的微混合器之分合流道模組最佳化 31 4-6 數值模擬與實驗結果的驗證 33 4-7 雷諾數對具有非對齊入口流道與非直角轉彎分合流道模組接頭的微混合器之混合的影響 33 4-7-1 各種雷諾數下流體在主混合流道流動特徵與混合形態 33 4-7-2 各種雷諾數下非直角轉彎分合流道中的流動特徵與濃度分佈 34 4-8 具有非對齊入口流道與直角轉彎及非直角轉彎分合流道模組接頭的微混合器之比較 35 4-9 微混合器之分合流道模組數目的影響 37 4-10 雷諾數對具有非對齊入口流道與四個非直角轉彎分合流道模組的微混合器的影響 37 第五章 結論與未來展望 39 5-1 結論 39 5-2 未來展望 39 參考文獻 40 附錄 43 A-1流體粒子之速度內差 43 A-2目標截面之濃度擴散模式 45

    [1] A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sensors and Actuators B: Chemical, vol. 1, no. 1-6, pp. 244-248, 1990.
    [2] E. L. Cussler, Diffusion Mass Transfer in Fluid Systems, 3rd ed. New York: Cambridge University Press, 2009.
    [3] N.-T. Nguyen and Z. Wu, “Micromixers - a review,” Journal of Micromechanics and Microengineering, vol. 15, no. 2, R1-R16, 2005.
    [4] C.-Y. Lee, W.-T. Wang, C.-C. Liu, and L.-M. Fu, “Passive mixers in microfluidic systems: A review,” Chemical Engineering Journal, vol. 288, pp. 146-160, 2016.
    [5] N. Kockmann, C. Föll, and P. Woias, “Flow regimes and mass transfer characteristics in static micro mixers,” Proceedings of International Society for Optics and Photonics, vol. 4982, pp. 319-329, 2003.
    [6] D. Bothe, C. Stemich, and H.-J. Warnecke, “Fluid mixing in a T-shaped micro-mixer,” Chemical Engineering Science, vol. 61, no. 9, pp. 2950-2958, 2006.
    [7] C. Galletti, M. Roudgar, E. Brunazzi, and R. Mauri, “Effect of inlet conditions on the engulfment pattern in a T-shaped micro-mixer,” Chemical Engineering
    Science, vol. 185-186, no. 3, pp. 300-313, 2012.
    [8] T. Matsunaga and K. Nishino, “Swirl-inducing inlet for passive micromixers,” RSC Advances, vol. 4, no. 2, pp. 824-829, 2014.
    [9] M. A. Ansari, K.-Y. Kim, K. Anwar, and S. M. Kim, “Vortex micro T-mixer with non-aligned inputs,” Chemical Engineering Journal, vol. 181-182, pp. 846- 850, no. 2, 2012.
    [10] C. A. Cortes-Quiroz, A. Alireza, and M. Zangeneh, “Evaluation of flow characteristics that give higher mixing performance in the 3-D T-mixer versus the typical T-mixer,” Sensors and Actuators B: Chemical, vol. 202, pp. 1209-1219, 2014.
    [11] C. A. Cortes-Quiroz, A. Azarbadegan, and M. Zangeneh, “Effect of channel aspect ratio of 3-D T-mixer on flow patterns and convective mixing for a wide range of Reynolds number,” Sensors and Actuators B: Chemical, vol. 239, no. 2, pp. 1153-1176, 2017.
    [12] R. Rabani, S. Talebi, and M. Rabani, “Numerical analysis of lamination effect in a vortex micro T-mixer with non-aligned inputs,” Heat and Mass Transfer, vol. 52, no. 3, pp. 611-619, 2016.
    [13] W. R. Dean, “Note on the motion of a fluid in a curved pipe,” Philosophical Magazine, vol. 4, no. 20, pp. 208-223, 1927.
    [14] N. Kockmann, M. Engler, D. Haller, and P. Woias, “Fluid dynamics and transfer processes in bended microchannels,” Heat Transfer Engineering, vol. 26, no. 3, pp. 71–78, 2005.
    [15] S. Hossain, and K.-Y. Kim, “Mixing performance of a serpentine micromixer with non-aligned inputs,” Micromachines, vol. 6, no. 7, pp. 842-854, 2015
    [16] T.-S. Sheu, S.-J. Chen, and J.-J. Chen, “Mixing of a split and recombine with tapered curved microchannels, ” Chemical Engineering Science, vol. 71, pp. 321-332, 2012.
    [17] A. Afzal, and K.-Y. Kim, “Passive split and recombination micromixer with convergent–divergent walls,” Chemical Engineering Journal, vol. 203, pp. 182-192, 2012.
    [18] Y.-C. Chien, “Micromixers with double T-junction and split-and-and recombine sub-channels,” Master's Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2016.
    [19] T. Matsunaga, K. Shibata, K. Murotani, and S. Koshizuka, “Hybrid grid-particle method for fluid mixing simulation,” Computational Particle Mechanics, vol. 2, no. 3, pp. 233-246, 2015.
    [20] T. Matsunaga, H. J. Lee, and K. Nishino, “An approach for accurate simulation of liquid mixing in a T-shape micromixer,” Lab on a Chip, vol. 13, no. 8, pp. 1515-1521, 2013.
    [21] H. Bockhorn, D. Mewes, W. Peukert, and H. J. Warnecke, Micro and Macro Mixing, Berlin, Germany: Springer, 2010.
    [22] C. Nonino, S. Savino, and S. D. Giudice, “Numerical assessment of the mixing performance of different serpentine microchannels,” Heat Transfer Engineering, vol. 30, no. 1-2, pp. 101-112, 2009.
    [23] H.-H. Lee, Taguchi methods: principles and practices of quality design, 2nd ed. New Taipei City, Taiwan: Gau Lih Book Co., Ltd, 2004.
    [24] A. Nealen, “An as-short-as-possible introduction to the least squares,weighted least squares and moving least squares methods for scattered data approximation and interpolation,” Technische Universität Darmstadt, Tech. Rep., 2004, URL:http://www.nealen.com/projects.
    [25] J. L. Bentley, “Multidimensional binary search trees used for associative Searching,” Communications of the Association for Computing Machinery, vol. 18, no. 9, pp. 509-517, 1975.
    [26] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal algorithm for approximate nearest neighbor searching in fixed dimensions,” Journal of the Association for Computing Machinery, vol. 45, no. 6, pp. 891-923, 1998.
    [27] T. Most and C. Bucher, “A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions,” Structural Engineering and Mechanics, vol. 21, no. 3, pp. 315-332, 2005.

    下載圖示 校內:2023-07-17公開
    校外:2023-07-17公開
    QR CODE