簡易檢索 / 詳目顯示

研究生: 蘇忠瑞
Su, Chung-Jui
論文名稱: 於氯化鋁-三甲基氯化銨離子液體中電沉積金屬奈米鋁線
Electrodeposition of aluminum nanowires from aluminum chloride trimethylamine hydrochloride ionic liquids
指導教授: 孫亦文
Sun, I-Wen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 90
中文關鍵詞: 奈米鋁線電化學離子液體
外文關鍵詞: aluminum nanowire, electrochemistry, ionic liquid
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用酸性的氯化鋁/三甲基氯化銨離子液體應用於電化學研究和探討上。目前為止此離子液體並未被使用於電化學研究上,而其具備的高黏度特質也使得在電沉積鋁實驗中不需使用任何模板和添加劑便可製備奈米鋁線和具節狀奈米鋁線。研究中使用三種不同氯化鋁/三甲基氯化銨比例之離子液體 (62:38、60:40和58:42)並搭配定電位法、定電流法和定電位脈衝法分別製備及探討奈米鋁線的形成,並從中推測其成長機制和控制條件,在奈米鋁線部分發現可利用電位選擇來調控奈米鋁線之粗細;在定電流法電鍍中得到不同震盪頻率和震幅之時間對電位圖,此結果也影響到具節狀奈米鋁線之形貌;最後在定電位脈衝法下成功的以控制脈衝時間和電位來調控節狀奈米鋁線的寬度和週期。所製備之奈米鋁線均以掃描式電子顯微鏡、穿透式電子顯微鏡、X光繞射儀進行表面形貌和晶體結構上的鑑定。

    The electrochemical fabriccation of Al nanowires by electrodeposition without the use of template and additives is studied in the Lewis acidic aluminum chloride-trimethylamine hydrochloride (AlCl3-TMHC) ionic liquids containing various AlCl3-TMHC mol ratios of 62:38, 60:40 and 58:42. The deposition was performed using constant potential, pulse potential and constant current electrolysis methods, respectively.
    For constant potential electrolysis, the diameter of Al nanowires can be varied by deposition potential. For constant current electrolysis, potential oscillation occurs during the electrolysis, the frequency and amplitude of the potential oscillation varies with the applied current. Such potential oscillation is associated with the formation of segment Al nanowires. Segment Al nanowires can also be prepared by pulse potential electrolysis, the width and period of the Al segment can be controlled by pulse-time and pulse-potential. All the electrodeposited Al samples are characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction

    Abstract III Abstract (in Chinese) IV Acknowlegment V Chapter I. Introduction 1 1.1 Introduction of ionic liquids 1 1.2 The history and development of ionic liquids 7 1.3 Introduction and application of chloroaluminate based ionic liquids 11 Chapter II. Experimental 16 2.1 Reagents and materials 16 2.2 Instruments 17 2.3 Experimental methods 20 Chapter III. Results and Discussions 22 3.1 Electrodeposition of aluminum nanowires by chronoamperometry and electrochemical study in AlCl3/TMHC ILs 22 3.1.1 Cyclic voltammetry study in AlCl3/TMHC ionic liquids 22 3.1.2 Electrodeposition of aluminum in 60:40 mol ratio of AlCl3/ TMHC IL on tungsten substrate 29 3.1.3 Electrodeposition of aluminum in 62:38 mol ratio of AlCl3/TMHC on tungsten substrate 36 3.1.4 Electrodeposition of aluminum in 58:42 mol ratio of AlCl3/TMHC on tungsten substrate 39 3.1.5 Electrodeposition of aluminum on different substrates 44 3.1.6 Identified of aluminum nanowires by XRD/TEM and summary 50 3.2 Electrodeposition of periodically aluminum nanowires by constant current electrolysis 52 3.3 Electrodeposition of periodically aluminum nanowires by pulse potential deposition 59 3.3.1 Pulse potential deposition with symmetric pulse period at room temperature 59 3.3.2 Pulse potential deposition with symmetric time at high temperature 64 3.3.3 Pulse potential deposition with asymmetric pulse periods at room temperature 74 Chapter IV. Conclusions 84 Reference 85

    1. K. R. Seddon; Journal of Chemical Technology and Biotechnology, 68, 351, 1997

    2. P. Wasserscheid and W. Lein; Angewandte Chemie International Edition, 39, 3772, 2000

    3. R. D. Rogers and K. R. Seddon; Science, 302, 792, 2003

    4. M. R. Bermejo, F. De la Rosa, E. Barrado and Y. Castrillejo; Journal of Electrochemical Society, 603, 81, 2007

    5. M. Gibilaro, L. Massot and P. Chamelot; Journal of Nuclear Materials, 382, 39, 2008

    6. J. M. Schafir and J. A. Plambeck; Canadian Journal of Chemistry, 48, 2131, 1970

    7. N. V. Plechkova and K. R. Seddon; Chemical Society Reviews, 37, 123, 2008

    8. M. J. Earle and K .R. Seddon; Ionic liquids.; Pure and Applied Chemistry, 72, 1391, 2000

    9. W. Simka and D. Puszczyk; Electrochimica Acta, 54, 5307, 2009

    10. S. Zein El Abedin and F. Endres; ChemPhysChem, 7, 58, 2006

    11. M. Galin’ski, A. Lewandowski and I. S. Pniak; Electrochimica Acta, 51, 5567, 2006

    12. M. C. Buzzeo, R. G. Evans and R. G. Compton, ChemPhysChem, 5, 1106, 2004

    13. C. Nanjundiah, S. F. McDevit and V. R. Koch; Journal of Electrochemical Society, 144, 3392, 1997

    14. M. Ue, M. Take, A. Toriumi, A. Kominato, R. Hagiwara and Y. Ito; Journal of Electrochemical Society, 150, A499, 2003

    15. Y. Ito and T. Nohira; Electrochimica Acta, 45, 2611, 2000

    16. J. Fuller, A. C. Breda and R. T. Carlin; Journal of Electrochemical Society, 144, L67, 1997

    17. J. F. Huang and I W. Sun; Electrochimica Acta, 49, 3251, 2004

    18. Y. Katayama, S. Dan, T. Miura and T. Kishi; Journal of Electrochemical Society, 148, C102, 2001

    19. M. H. Yang, M. C. Yang and I W. Sun; Journal of Electrochemical Society, 50, C544, 2003

    20. S. I. Hsiu and I W. Sun; Journal of Applied Electrochemistry, 34, 1057, 2004

    21. P. Y. Chen, Y. F. Lin and I W. Sun; Journal of Electrochemical Society, 146, 3290, 1999

    22. H. Y. Yang and I W. Sun; Electroanalysis, 11, 195, 1999

    23. M. L. Chen, Y. N. Zhao, D. W. Zhang, Y. Tian and J. H. Wang; Journal of Analytical Atomic Spectrometry. 25, 1688, 2010

    24. M. C. Buzzeo, O. V. Klymenko, J. D. Wadhawan, C. Hardacre, K. R. Seddon and R. G. Compton, Journal of Physical Chemistry A, 107, 8872, 2003

    25. I. M. AlNashef, M. L. Leonard, M. A. Matthews and J. W. Weidner; Industrial and Engineering Chemistry Research, 41, 4475, 2002

    26. M. C. Buzzeo, D. Givoanelli, C. Hardacre, K. R. Seddon and R. G. Compton, in press

    27. F. Endres, M. Bukowski, R. Hempelmann and H. Natter, Angewandte Chemie International Edition,42, 2428, 2003

    28. C. G. Granqvist and R. A. Buhrman; Journal of Applied Physics, 47, 2200, 1976

    29. J. C. Li, S. H. Nan and Q. Jiang; Surface and Coatings Technology , 106, 135, 1998

    30. P. Wasserscheid and W. Keim; Angew. Chem. 2000, 112, 3926; Angewandte Chemie International Edition, 2000, 39, 3772

    31. P. J. Smith, A. Sethi and T. Welton; NATO Science Series II: Mathematics Physical Chemistry, 2002, 52, 345

    32. B. M. Quinn, Z. Ding, R. Moulton and A. J. Bard; Langmuir, 18, 1734, 2002

    33. G. Mamantov, G. S. Chen, H. Xiao, Y. Yang and E. Hondrogiannis; Journal of Electrochemical Society, 142, 1758, 1995

    34. P. Walden; Bull. Acad. Impper. Sci. 1800, 1914

    35. F. H. Hurley; U.S. patent, 244, 6331, 1948

    36. D. F. Evans, S. H. Chen, G. W. Schriver and E. M. Amett; Journal of the American Chemical Society, 103, 481, 1981

    37. J. Robinson and R. A. Osteryoung; Journal of the American Chemical Society, 101, 323, 1979

    38. J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey; Inorganic Chemistry, 21, 1236, 1982

    39. T. M. Laher and C. L. Hussey; Inorganic Chemistry, 22, 3247, 1983

    40. T. B. Scheffler and C. L. Hussey; Inorganic Chemistry, 23, 1926, 1984

    41. T. B. Scheffler, C. L. Hussey, K. R. Seddon, C. M. Kear and P. D. Armitage; Inorganic Chemistry, 22, 2099, 1983

    42. F. H. Hurley, T. P. Wier, Jr.; Journal of Electrochemical Scoiety, 98, 207, 1951

    43. R. A. Carpio, L. A. King, R. E. Lindstrom, J. C. Nardi and C. L. Hussey; Journal of Electrochemical Society, 126, 1644, 1979

    44. A. A. Fannin, Jr. D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes and J. L. Williams; Journal of Physical Chemistry, 88, 2614, 1984

    45. M. Lipsztajn and R. A. Osteryoung; Journal of Electrochemical Society, 130, 1968, 1983

    46. W. W. Porterfield and J. Y, Yoke; in “Advences in Chemistry Series”, No. 150 Chapter 20, American Chemical Society, Washington, D. C. , 1976

    47. C. L. Hussey; in “Advance in Molten Salt Chemistry”, Vol. 5, G. Mamantov, Editor, pp. 185, Elservier Science Publishing Co., Amsterdam, 1983

    48. C. L. Hussey; Pure and Applied Chemistry, 60, 1763, 1988

    49. J. S. Wilkes and M. J. Zaworotko; Journal of the Chemical Society, Chemical Communications. 965, 1992

    50. V. R. Koch, C. Nanjundiah, G. B. Appetecchi and B. Serossati; Journal of Electrochemical Society, 146, L116, 1995

    51. P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Gratzel; Inorganic Chemistry, 35, 1168, 1996

    52. K. R. Seddon, A. Stark and M. J. Torres; Pure and Applied Chemistry, 72, 2275, 2000

    53. J. Fuller, R. T. Carlin, H. C. De Long and D. Haworth; Journal of Chemical Society, 144, 3881, 1997

    54. D. R. MacFarlane, P. Meakin, J. Sun, N. Amini and M. Forsyth; Journal of Physical Chemistry B, 103, 4164, 1999

    55. P. Bonhote, A. P. Dias, N. Papageorgious, K. Kalyanasundaram and M. Gratzel; Inorganic Chemistry, 35, 1168, 1996

    56. M. T. Garcia, N. Gathergood and P. J. Scammells; Green Chemistry, 7, 9, 2005

    57. N. Gathergood, M. T. Garcia and P. J. Scammells; Green Chemistry, 6, 166, 2004

    58. J. L. Anderson, R. Ding, A. Ellern and D. W. Armstrong; Journal of the American Chemical Society, 127, 593, 2005

    59. Z. Fei, D. Zhao, T. J. Geldbach, R. Scopelliti and P. J. Dyson; Chemistry A European Journal, 10, 4886, 2004

    60. H. OHno; Bulletin of the Chemical Society of Japan, 79, 1165, 2006

    61. A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J. H. Davis, Jr. and R. D. Roger; Chemical Communications, 1, 135, 2001

    62. E. D. Bates, R. D. Mayton, I. Ntai and J. H. Davis, Jr.; Journal of the American Chemical Society, 124. 926, 2002

    63. A. P. Abbott, G Capper, D. L. Davis, R. K. Rasheed and V. Tambyrajah; Chemical Communications, 1, 70, 2003

    64. Q. Zhang, K. D. O. Vigier, S. Royer and F. Jerome; Chemical Soceity Reviews, 41, 7108, 2012

    65. R. J. Gale, B. Gillbert and R. A. Osteryoung; Inorganic Chemistry, 17, 2728, 1978

    66. E. Ryteer, H. A. Oye, S. J. Cyvin, B. N. Cyvin and P. J. Klaelboe; Journal of Inorganic and Nuclear Chemistry, 35, 1185, 1973

    67. R. J. Gale and R. A. Osteryoung; Inorganic Chemistry, 19, 2242, 1980

    68. G. R. Stafford; Journal of Electrochemical Society, 136, 635, 1989

    69. J. L. Gary and G. E. Maciel; Journal of the American Chemical Society, 103, 7147, 1981

    70. T. Matsumoto and K. Ichilawa; Journal of the American Chemical Society, 106, 4316, 1984

    71. C. L. Hussey, T. B. Scheffler, J. S. wilkes and A. A. Fannon, Jr.; Journal of Electrochemical Society, 113, 1389, 1986

    72. J. P. Schoebrechts and B. P. Gillebrt; Journal of Electrochemical Society, 128, 2679, 1981

    73. Z. J. Karpinski and R. A. Osteryoung; Inorganic Chemistry, 24, 2259, 1985

    74. S. Z. E. Abedin, P. Giridhar, P. Schwab and F. Endres; Electrochemistry Communications, 12, 1084, 2010

    75. T. L. T. Bui, W. Korth and A. Jess; Catalysis Communications, 25, 118, 2012

    76. P. V. Suneesh, T. G. S. Babu and T. Ramachandran; International Journal of Materials, Metallurgy and Materials, 20, 909, 2013

    77. T. Jiang, M. J. Chollier Brym, G. Dube, A. Lasia and G. M. Brisard; Surface &Coatings Technology, 201, 10, 2006

    78. N. M. Rocher, E. I. Izgorodina, T. Ruther, M. Forsyth, D. R. MacFarlane, T. Rodopoulos, M. D. Horne and A. M. Bond; Chemistry A European Journal, 15, 3435, 2009

    79. S. Z. E. Abedin, E. M. Moustafa, R. Hempelmann, H. Natter and F. Endres; Electrochemistry Communications, 7, 1111, 2005

    80. P. Eiden, Q. Liu, S. Z. E. Abedin, F. Endres and I. Krossing; Chemistry A European Journal, 15, 3426, 2009

    81. Q. X. Liu, S. Zein El Abedin and F. Endres; Journal of the Electrochemical Society, 155, D357, 2008

    82. S. Zein El Abedin, E. M. Moustafa, R. Hemplmann, H. Natter and F. Endres; ChemPhysChem, 7, 1535, 2006

    83. T. Rodopoulos, L. Smith, M. D. Horne and T. Ruther; Chemistry A European Journal, 16, 3815, 2010

    84. H. M. A. Abood, A. P. Abbott, A. D. Ballantyne and K. S. Ryder; Chemical Communications, 47, 3523, 2011

    85. A. P. Abbott, R. C. Harris, Y. T. Hsieh, K. S. Ryder and I W. Sun; Physical Chemistry Chemical Physics, 16, 14675, 2014

    86. Y. Fang, K. Yoshii, X. Jiang, X. G. Sun, T. Tsuda, N. Mehio and S. Dai; Electrochimica Acta, 160, 82, 2015

    87. K. Y. Chan and R. F. Savinell; Journal of the Electrochemical Society, 138, 1976, 1991

    88. C. Huber, T. Huber, M. Sadoqi, J. Lubin, S. Manalis and C. Prater; Science, 263, 800, 1994

    89. C. Li, W. Ji, J. Chen and Z. Tao; Chemistry of Materials, 19, 5812, 2007

    90. H. Tamada, T. Doumuki, T. Yamaguchi and S. Matsumoto; Optics Letters, 22, 419, 1997

    91. Q. Liao, W. Pitner, G. Stewart, C. Hussey and G. Stafford; Journal of the Electrochemical Society, 144, 936, 1997

    92. D. R. Zinurov, R. R. Zinurov, R. A. Akhmed’yanova and A. G. Liakumovich; Petroleum Chemistry, 50, 376, 2010

    93. S. Zhang, Q. Zhang and C. Zhang; Industrial and Engineering Chemistry Research, 43, 614, 2004

    94. P. Wasserscheid and T. Welton; Ionic Liquids in Synthesis, Second, Volume 1, Wiley-VCH, Germany, P65, 2008

    95. J. J. Lee, I. T. Bae, D. A. Scherson, B. Miller and K. A. Wheeler; Journal of Electrochemical Society, 147, 562, 2000

    96. J. Robinson and R. A. Osteryoung; Journal of Electrochemical Society, 127, 122, 1980

    下載圖示 校內:2020-09-01公開
    校外:2025-01-01公開
    QR CODE